IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v390y2018icp51-61.html
   My bibliography  Save this article

Scale dependence and parameter sensitivity of the EPIC model in the agro-pastoral transitional zone of north China

Author

Listed:
  • Qiao, Jianmin
  • Cao, Qian
  • Liu, Yupeng
  • Wu, Quanyuan

Abstract

Under the background of rapid population growth, achieving accurate assessments of crop yields is critical to national policy adjustment and food security. Among all the evaluation methods for crop yields, the Environmental Policy Integrated Climate (EPIC) model is considered to be an effective tool. Since published, it has been widely applied on local, regional, and global scales. However, in its practical applications, the impact of scale variation on the simulation results has not received full consideration. The scale variation can introduce many uncertain effects in the simulation results. Furthermore, as a basis for parameter calibration, parameters sensitivity analyses were always been ignored at large scale studies. In this study, we used the GIS-based EPIC (GEPIC) model to assess the simulation accuracies at different scales and local sensitivity analysis was adopted to analyze the sensitivity of the crop parameters in each grid first time. The results showed that EPIC model has scale-dependence and the smaller the scale is, the more accurate the results are. The most sensitive parameter of maize and soybeans is the energy conversion to biomass factor (WA) in the agro-pastoral transitional zone of north China, whereas the harvest index (HI) is the most sensitive parameter for the three other crops of rice, spring wheat, and winter wheat. For the same crop, parameter sensitivity is heterogeneous in space due to varied input variables. In addition, we find that parameters sensitivities (Si) vary as the parameters and the variations in Si for the five parameters are different. Excluding the Si of HI for spring wheat which has the greatest change and the variation is nearly 0.5, the Si of other parameters change slightly. In the application of GEPIC model, we should consider the effects of scale variation on crop yields, particular for areas with high heterogeneity of cropland patches. In addition, this study provides a reference for setting the input parameters of the EPIC model.

Suggested Citation

  • Qiao, Jianmin & Cao, Qian & Liu, Yupeng & Wu, Quanyuan, 2018. "Scale dependence and parameter sensitivity of the EPIC model in the agro-pastoral transitional zone of north China," Ecological Modelling, Elsevier, vol. 390(C), pages 51-61.
  • Handle: RePEc:eee:ecomod:v:390:y:2018:i:c:p:51-61
    DOI: 10.1016/j.ecolmodel.2018.10.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018303442
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.10.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerald C. Nelson & Richard D. Robertson, 2008. "Green Gold or Green Wash: Environmental Consequences of Biofuels in the Developing World," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 30(3), pages 517-529.
    2. Haggblade, Steven & Longabaugh, Steven & Tschirley, David L., 2009. "Spatial Patterns of Food Staple Production and Marketing in South East Africa: Implications for Trade Policy and Emergency Response," Food Security International Development Working Papers 54553, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    3. You, Liangzhi & Wood, Stanley, 2006. "An entropy approach to spatial disaggregation of agricultural production," Agricultural Systems, Elsevier, vol. 90(1-3), pages 329-347, October.
    4. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    5. Neumann, Kathleen & Stehfest, Elke & Verburg, Peter H. & Siebert, Stefan & Müller, Christoph & Veldkamp, Tom, 2011. "Exploring global irrigation patterns: A multilevel modelling approach," Agricultural Systems, Elsevier, vol. 104(9), pages 703-713.
    6. Su, Shiliang & Hu, Yi’na & Luo, Fanghan & Mai, Gengchen & Wang, Yaping, 2014. "Farmland fragmentation due to anthropogenic activity in rapidly developing region," Agricultural Systems, Elsevier, vol. 131(C), pages 87-93.
    7. Guang Wan & Enjiang Cheng, 2001. "Effects of land fragmentation and returns to scale in the Chinese farming sector," Applied Economics, Taylor & Francis Journals, vol. 33(2), pages 183-194.
    8. Ye, Liming & Tang, Huajun & Wu, Wenbin & Yang, Peng & Nelson, Gerald C. & Mason-D'Croz, Daniel & Palazzo, Amanda, 2014. "Chinese food security and climate change: Agriculture futures," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 8, pages 1-39.
    9. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    10. Zhongyi Sun & JiQuan Zhang & DengHua Yan & Lan Wu & Enliang Guo, 2015. "The impact of irrigation water supply rate on agricultural drought disaster risk: a case about maize based on EPIC in Baicheng City, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 23-40, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiao & Yang, Dawen, 2021. "Irrigation schedule analysis and optimization under the different combination of P and ET0 using a spatially distributed crop model," Agricultural Water Management, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas, Timothy S., 2015. "US maize data reveals adaptation to heat and water stress:," IFPRI discussion papers 1485, International Food Policy Research Institute (IFPRI).
    2. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    3. Wang, Zhiqiang & Ye, Li & Jiang, Jingyi & Fan, Yida & Zhang, Xiaoran, 2022. "Review of application of EPIC crop growth model," Ecological Modelling, Elsevier, vol. 467(C).
    4. Cai, Liping & Wang, Hui & Liu, Yanxu & Fan, Donglin & Li, Xiaoxiao, 2022. "Is potential cultivated land expanding or shrinking in the dryland of China? Spatiotemporal evaluation based on remote sensing and SVM," Land Use Policy, Elsevier, vol. 112(C).
    5. Yu, Peiheng & Fennell, Shailaja & Chen, Yiyun & Liu, Hui & Xu, Lu & Pan, Jiawei & Bai, Shaoyun & Gu, Shixiang, 2022. "Positive impacts of farmland fragmentation on agricultural production efficiency in Qilu Lake watershed: Implications for appropriate scale management," Land Use Policy, Elsevier, vol. 117(C).
    6. Chul-Hee Lim & Yuyoung Choi & Moonil Kim & Soo Jeong Lee & Christian Folberth & Woo-Kyun Lee, 2018. "Spatially Explicit Assessment of Agricultural Water Equilibrium in the Korean Peninsula," Sustainability, MDPI, vol. 10(1), pages 1-17, January.
    7. Chul-Hee Lim & Seung Hee Kim & Yuyoung Choi & Menas C. Kafatos & Woo-Kyun Lee, 2017. "Estimation of the Virtual Water Content of Main Crops on the Korean Peninsula Using Multiple Regional Climate Models and Evapotranspiration Methods," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    8. Hendriks, C.M.J. & Stoorvogel, J.J. & Claessens, L., 2016. "Exploring the challenges with soil data in regional land use analysis," Agricultural Systems, Elsevier, vol. 144(C), pages 9-21.
    9. Food and Agricultural Organization [FAO], 2016. "Climate Change and Food Systems: Global Assessments and Implications for Food Security and Trade," Working Papers id:8512, eSocialSciences.
    10. Wang, Yahui & Li, Xiubin & Lu, Dan & Yan, Jianzhong, 2020. "Evaluating the impact of land fragmentation on the cost of agricultural operation in the southwest mountainous areas of China," Land Use Policy, Elsevier, vol. 99(C).
    11. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Wang, Xiaobing & Yu, Xiaohua, 2011. "Scale Effects, Technical Efficiency and Land Lease in China," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 115736, European Association of Agricultural Economists.
    13. Laure Latruffe & Laurent Piet, 2013. "Does land fragmentation affect farm performance? A case study from Brittany," Working Papers hal-01208908, HAL.
    14. Dono, Gabriele & Cortignani, Raffaele & Doro, Luca & Giraldo, Luca & Ledda, Luigi & Pasqui, Massimiliano & Roggero, Pier Paolo, 2013. "Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems," Agricultural Systems, Elsevier, vol. 117(C), pages 1-12.
    15. Jia, Lili, 2012. "Land fragmentation and off-farm labor supply in China," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 66, number 66.
    16. Kawasaki, Kentaro, 2010. "The costs and benefits of land fragmentation of rice farms in Japan," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 1-18.
    17. Terrance Hurley & Jawoo Koo & Kindie Tesfaye, 2018. "Weather risk: how does it change the yield benefits of nitrogen fertilizer and improved maize varieties in sub‐Saharan Africa?," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 711-723, November.
    18. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    19. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    20. Zhihai Yang & Amin W. Mugera & Ning Yin & Yumeng Wang, 2018. "Soil conservation practices and production efficiency of smallholder farms in Central China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(4), pages 1517-1533, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:390:y:2018:i:c:p:51-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.