IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v380y2018icp1-7.html
   My bibliography  Save this article

Robust stability of closed artificial ecosystem cultivating cabbage realized by ecological thermodynamics and dissipative structure system

Author

Listed:
  • Hu, Dawei
  • Wang, Kai
  • Hu, Jingfei
  • Xu, Xinming
  • Long, Yufei

Abstract

The environmental disturbances often negatively influence normal operation of closed artificial ecosystems (CAE). In this paper, a specific CAE cultivating cabbage (CAECC) was considered as a dissipative structure system (DSS), its highly precise kinetic model was developed by system dynamics and experimental data. Based on ecological thermodynamics (ET) and DSS, the optimal feedback control law of light intensity, temperature and aerating rate was obtained from the stored-energy function and Odum’s maximum power principle. The digital simulation results showed that the closed-loop CAECC control system could be stabilized at a prescribed working point with desired dynamic response characteristics, accompanied with conducting eco-work and dissipation of the stored energy generated by environmental disturbances with different strengths. This research will lay a theoretical and methodological basis for construction and operation of CAE.

Suggested Citation

  • Hu, Dawei & Wang, Kai & Hu, Jingfei & Xu, Xinming & Long, Yufei, 2018. "Robust stability of closed artificial ecosystem cultivating cabbage realized by ecological thermodynamics and dissipative structure system," Ecological Modelling, Elsevier, vol. 380(C), pages 1-7.
  • Handle: RePEc:eee:ecomod:v:380:y:2018:i:c:p:1-7
    DOI: 10.1016/j.ecolmodel.2018.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018301315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    2. Hilario Becerril & Ignacio De los Rios, 2016. "Energy Efficiency Strategies for Ecological Greenhouses: Experiences from Murcia (Spain)," Energies, MDPI, vol. 9(11), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haishan Chen & Xiaoping Meng & Dianlei Liu & Wei Wang & Xiaodong Xing & Zhiyong Zhang & Chen Dong, 2022. "Closed-Loop Microbial Fuel Cell Control System Designed for Online Monitoring of TOC Dynamic Characteristics in Public Swimming Pool," IJERPH, MDPI, vol. 19(20), pages 1-12, October.
    2. Marull, Joan & Pino, Joan & Melero, Yolanda & Tello, Enric, 2023. "Using thermodynamics to understand the links between energy, information, structure and biodiversity in a human-transformed landscape," Ecological Modelling, Elsevier, vol. 476(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilaria Zambon & Massimo Cecchini & Enrico Maria Mosconi & Andrea Colantoni, 2019. "Revolutionizing Towards Sustainable Agricultural Systems: The Role of Energy," Energies, MDPI, vol. 12(19), pages 1-11, September.
    2. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    3. Ge, Quanwu & Ke, Zhixin & Liu, Yutong & Chai, Fu & Yang, Wenhua & Zhang, Zhili & Wang, Yang, 2023. "Low-carbon strategy of demand-based regulating heating and lighting for the heterogeneous environment in beijing Venlo-type greenhouse," Energy, Elsevier, vol. 267(C).
    4. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    5. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    6. Marius-Corneliu Marinaș & Marin Dinu & Aura-Gabriela Socol & Cristian Socol, 2018. "Renewable energy consumption and economic growth. Causality relationship in Central and Eastern European countries," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-29, October.
    7. Chiara Terrosi & Sonia Cacini & Gianluca Burchi & Maurizio Cutini & Massimo Brambilla & Carlo Bisaglia & Daniele Massa & Marco Fedrizzi, 2020. "Evaluation of Compressor Heat Pump for Root Zone Heating as an Alternative Heating Source for Leafy Vegetable Cultivation," Energies, MDPI, vol. 13(3), pages 1-15, February.
    8. Cossu, Marco & Cossu, Andrea & Deligios, Paola A. & Ledda, Luigi & Li, Zhi & Fatnassi, Hicham & Poncet, Christine & Yano, Akira, 2018. "Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 822-834.
    9. Hegazy, Anwar & Farid, Mohammed & Subiantoro, Alison & Norris, Stuart, 2022. "Sustainable cooling strategies to minimize water consumption in a greenhouse in a hot arid region," Agricultural Water Management, Elsevier, vol. 274(C).
    10. Hu, Guoqing & You, Fengqi, 2022. "Renewable energy-powered semi-closed greenhouse for sustainable crop production using model predictive control and machine learning for energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    12. Ouazzani Chahidi, Laila & Fossa, Marco & Priarone, Antonella & Mechaqrane, Abdellah, 2021. "Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate – A case study," Applied Energy, Elsevier, vol. 282(PA).
    13. Zhi Li & Akira Yano & Marco Cossu & Hidekazu Yoshioka & Ichiro Kita & Yasuomi Ibaraki, 2018. "Electrical Energy Producing Greenhouse Shading System with a Semi-Transparent Photovoltaic Blind Based on Micro-Spherical Solar Cells," Energies, MDPI, vol. 11(7), pages 1-23, June.
    14. Nursyahirah Mohd Shatar & Mohd Azizi Abdul Rahman & Mohd Nabil Muhtazaruddin & Sheikh Ahmad Zaki Shaikh Salim & Baljit Singh & Firdaus Muhammad-Sukki & Nurul Aini Bani & Ahmad Shakir Mohd Saudi & Jorg, 2019. "Performance Evaluation of Unconcentrated Photovoltaic-Thermoelectric Generator Hybrid System under Tropical Climate," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    15. Anifantis, Alexandros Sotirios & Colantoni, Andrea & Pascuzzi, Simone, 2017. "Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating," Renewable Energy, Elsevier, vol. 103(C), pages 115-127.
    16. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    17. Hilario Becerril & Ignacio De los Rios, 2016. "Energy Efficiency Strategies for Ecological Greenhouses: Experiences from Murcia (Spain)," Energies, MDPI, vol. 9(11), pages 1-23, October.
    18. Chiara Bersani & Ahmed Ouammi & Roberto Sacile & Enrico Zero, 2020. "Model Predictive Control of Smart Greenhouses as the Path towards Near Zero Energy Consumption," Energies, MDPI, vol. 13(14), pages 1-17, July.
    19. Angel Carreño-Ortega & Emilio Galdeano-Gómez & Juan Carlos Pérez-Mesa & María Del Carmen Galera-Quiles, 2017. "Policy and Environmental Implications of Photovoltaic Systems in Farming in Southeast Spain: Can Greenhouses Reduce the Greenhouse Effect?," Energies, MDPI, vol. 10(6), pages 1-24, May.
    20. Chen, Xinge & Liang, Hao & Wu, Gang & Feng, Chaoqing & Tao, Tao & Ji, Yaning & Ma, Qianlei & Tong, Yuxin, 2023. "Coupled heat and humidity control system of narrow-trough solar collector and solid desiccant in Chinese solar greenhouse: Analysis of optical / thermal characteristics and experimental study," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:380:y:2018:i:c:p:1-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.