IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v272y2014icp362-378.html
   My bibliography  Save this article

A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy

Author

Listed:
  • Collalti, Alessio
  • Perugini, Lucia
  • Santini, Monia
  • Chiti, Tommaso
  • Nolè, Angelo
  • Matteucci, Giorgio
  • Valentini, Riccardo

Abstract

Forest ecosystems are characterized by high spatial heterogeneity, often related to complex composition and vertical structure which is a challenge in many process-based models. The need to expand process-based models (PBMs) to take in account such structural complexity led to development and testing of a new approach into Forest Ecosystem Models (FEMs), named 3D-CMCC-FEM, able to investigate carbon and water fluxes, including biomass pools and their partitioning, for complex multi-layer forests. 3D-CMCC FEM integrates several characteristics of the functional–structural tree models and the robustness of the light use efficiency (LUE) approach to investigate forest growth patterns and yield processes. The modelling approach was tested by simulating the effects of competition for light and water, growth and yield of a two-layered deciduous forest dominated by Turkey Oak in central Italy for a period of eight years. The model outputs were validated against a series of independently measured data for the major biomass pools, the inter-annual stem increments and above-ground net primary productivity of the overstorey and understorey, respectively. The comparison of Leaf Area Index, Gross Primary Production, and evapotranspiration produced by the model against MODIS data showed agreement in results. In addition, the multi-layered model approach was evaluated against a series of simplified versions to determine whether the enhanced complexity of the model positively contributed to its predictive ability. The proposed model reduced the error in the estimates of forest productivity (e.g. NPP) and dynamics (e.g. growth, mortality) and indicates the importance of considering, as far as possible, the structural complexity in PBMs.

Suggested Citation

  • Collalti, Alessio & Perugini, Lucia & Santini, Monia & Chiti, Tommaso & Nolè, Angelo & Matteucci, Giorgio & Valentini, Riccardo, 2014. "A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy," Ecological Modelling, Elsevier, vol. 272(C), pages 362-378.
  • Handle: RePEc:eee:ecomod:v:272:y:2014:i:c:p:362-378
    DOI: 10.1016/j.ecolmodel.2013.09.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013004456
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.09.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seidl, Rupert & Rammer, Werner & Scheller, Robert M. & Spies, Thomas A., 2012. "An individual-based process model to simulate landscape-scale forest ecosystem dynamics," Ecological Modelling, Elsevier, vol. 231(C), pages 87-100.
    2. Michael G. Salter & Keara A. Franklin & Garry C. Whitelam, 2003. "Gating of the rapid shade-avoidance response by the circadian clock in plants," Nature, Nature, vol. 426(6967), pages 680-683, December.
    3. Xenakis, Georgios & Ray, Duncan & Mencuccini, Maurizio, 2008. "Sensitivity and uncertainty analysis from a coupled 3-PG and soil organic matter decomposition model," Ecological Modelling, Elsevier, vol. 219(1), pages 1-16.
    4. Maselli, F. & Chiesi, M. & Moriondo, M. & Fibbi, L. & Bindi, M. & Running, S.W., 2009. "Modelling the forest carbon budget of a Mediterranean region through the integration of ground and satellite data," Ecological Modelling, Elsevier, vol. 220(3), pages 330-342.
    5. Chiesi, M. & Maselli, F. & Moriondo, M. & Fibbi, L. & Bindi, M. & Running, S.W., 2007. "Application of BIOME-BGC to simulate Mediterranean forest processes," Ecological Modelling, Elsevier, vol. 206(1), pages 179-190.
    6. Süleyman Özhan & Ferhat Gökbulak & Yusuf Serengil & Mehmet Özcan, 2010. "Evapotranspiration from a Mixed Deciduous Forest Ecosystem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2353-2363, August.
    7. Federico Magnani & Maurizio Mencuccini & Marco Borghetti & Paul Berbigier & Frank Berninger & Sylvain Delzon & Achim Grelle & Pertti Hari & Paul G. Jarvis & Pasi Kolari & Andrew S. Kowalski & Harry La, 2007. "The human footprint in the carbon cycle of temperate and boreal forests," Nature, Nature, vol. 447(7146), pages 849-851, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melania Michetti & Matteo Zampieri, 2014. "Climate–Human–Land Interactions: A Review of Major Modelling Approaches," Land, MDPI, vol. 3(3), pages 1-41, July.
    2. Blanco, Carolina Casagrande & Scheiter, Simon & Sosinski, Enio & Fidelis, Alessandra & Anand, Madhur & Pillar, Valério D., 2014. "Feedbacks between vegetation and disturbance processes promote long-term persistence of forest–grassland mosaics in south Brazil," Ecological Modelling, Elsevier, vol. 291(C), pages 224-232.
    3. Engel, Markus & Vospernik, Sonja & Toïgo, Maude & Morin, Xavier & Tomao, Antonio & Trotta, Carlo & Steckel, Mathias & Barbati, Anna & Nothdurft, Arne & Pretzsch, Hans & del Rio, Miren & Skrzyszewski, , 2021. "Simulating the effects of thinning and species mixing on stands of oak (Quercus petraea (Matt.) Liebl./Quercus robur L.) and pine (Pinus sylvestris L.) across Europe," Ecological Modelling, Elsevier, vol. 442(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Sanchis, Marí a & Del Campo, Antonio D. & Molina, Antonio J. & Fernandes, Tarcí sio J.G., 2015. "Modeling adaptive forest management of a semi-arid Mediterranean Aleppo pine plantation," Ecological Modelling, Elsevier, vol. 308(C), pages 34-44.
    2. Ruiz-Pérez, G. & González-Sanchis, M. & Del Campo, A.D. & Francés, F., 2016. "Can a parsimonious model implemented with satellite data be used for modelling the vegetation dynamics and water cycle in water-controlled environments?," Ecological Modelling, Elsevier, vol. 324(C), pages 45-53.
    3. Lessa Derci Augustynczik, Andrey & Yousefpour, Rasoul, 2021. "Assessing the synergistic value of ecosystem services in European beech forests," Ecosystem Services, Elsevier, vol. 49(C).
    4. Maselli, F. & Vaccari, F.P. & Chiesi, M. & Romanelli, S. & D’Acqui, L.P., 2017. "Modelling and analyzing the water and carbon dynamics of Mediterranean macchia by the use of ground and remote sensing data," Ecological Modelling, Elsevier, vol. 351(C), pages 1-13.
    5. Maselli, Fabio & Chiesi, Marta & Brilli, Lorenzo & Moriondo, Marco, 2012. "Simulation of olive fruit yield in Tuscany through the integration of remote sensing and ground data," Ecological Modelling, Elsevier, vol. 244(C), pages 1-12.
    6. Luo, Xu & He, Hong S. & Liang, Yu & Wu, Zhiwei, 2015. "Evaluating simulated effects of succession, fire, and harvest for LANDIS PRO forest landscape model," Ecological Modelling, Elsevier, vol. 297(C), pages 1-10.
    7. Govind, Ajit & Chen, Jing Ming & Bernier, Pierre & Margolis, Hank & Guindon, Luc & Beaudoin, Andre, 2011. "Spatially distributed modeling of the long-term carbon balance of a boreal landscape," Ecological Modelling, Elsevier, vol. 222(15), pages 2780-2795.
    8. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    9. Saah, David & Patterson, Trista & Buchholz, Thomas & Ganz, David & Albert, David & Rush, Keith, 2014. "Modeling economic and carbon consequences of a shift to wood-based energy in a rural ‘cluster’; a network analysis in southeast Alaska," Ecological Economics, Elsevier, vol. 107(C), pages 287-298.
    10. Ueyama, Masahito & Kai, Atsushi & Ichii, Kazuhito & Hamotani, Ken & Kosugi, Yoshiko & Monji, Nobutaka, 2011. "The sensitivity of carbon sequestration to harvesting and climate conditions in a temperate cypress forest: Observations and modeling," Ecological Modelling, Elsevier, vol. 222(17), pages 3216-3225.
    11. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    12. Wang, Qinying & He, Hong S. & Liu, Kai & Zong, Shengwei & Du, Haibo, 2023. "Comparing simulated tree biomass from daily, monthly, and seasonal climate input of terrestrial ecosystem model," Ecological Modelling, Elsevier, vol. 483(C).
    13. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    14. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    15. Jan Vopravil & Pavel Formánek & Tomáš Khel & Karel Jacko, 2024. "Water content in soil afforested with a mixture of broadleaves or Scots pine," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 70(2), pages 91-101.
    16. Ma, Shaoxiu & Churkina, Galina & Wieland, Ralf & Gessler, Arthur, 2011. "Optimization and evaluation of the ANTHRO-BGC model for winter crops in Europe," Ecological Modelling, Elsevier, vol. 222(20), pages 3662-3679.
    17. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    18. Pretzsch, Hans & Forrester, David I. & Rötzer, Thomas, 2015. "Representation of species mixing in forest growth models. A review and perspective," Ecological Modelling, Elsevier, vol. 313(C), pages 276-292.
    19. Fitts, Lucia A. & Fraser, Jacob S. & Miranda, Brian R. & Domke, Grant M. & Russell, Matthew B. & Sturtevant, Brian R., 2023. "An iterative site-scale approach to calibrate and corroborate successional processes within a forest landscape model," Ecological Modelling, Elsevier, vol. 477(C).
    20. Turley, Marianne C. & Ford, E. David, 2009. "Definition and calculation of uncertainty in ecological process models," Ecological Modelling, Elsevier, vol. 220(17), pages 1968-1983.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:272:y:2014:i:c:p:362-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.