IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v426y2003i6967d10.1038_nature02174.html
   My bibliography  Save this article

Gating of the rapid shade-avoidance response by the circadian clock in plants

Author

Listed:
  • Michael G. Salter

    (University of Leicester)

  • Keara A. Franklin

    (University of Leicester)

  • Garry C. Whitelam

    (University of Leicester)

Abstract

The phytochromes are a family of plant photoreceptor proteins that control several adaptive developmental strategies1,2. For example, the phytochromes perceive far-red light (wavelengths between 700 and 800 nm) reflected or scattered from the leaves of nearby vegetation. This provides an early warning of potential shading, and triggers a series of ‘shade-avoidance’ responses, such as a rapid increase in elongation3, by which the plant attempts to overgrow its neighbours3. Other, less immediate, responses include accelerated flowering and early production of seeds. However, little is known about the molecular events that connect light perception with increased growth in shade avoidance. Here we show that the circadian clock gates this rapid shade-avoidance response. It is most apparent around dusk and is accompanied by altered expression of several genes. One of these rapidly responsive genes encodes a basic helix–loop–helix protein, PIL1, previously shown to interact with the clock protein TOC1 (ref. 4). Furthermore PIL1 and TOC1 are both required for the accelerated growth associated with the shade-avoidance response.

Suggested Citation

  • Michael G. Salter & Keara A. Franklin & Garry C. Whitelam, 2003. "Gating of the rapid shade-avoidance response by the circadian clock in plants," Nature, Nature, vol. 426(6967), pages 680-683, December.
  • Handle: RePEc:nat:nature:v:426:y:2003:i:6967:d:10.1038_nature02174
    DOI: 10.1038/nature02174
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02174
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Collalti, Alessio & Perugini, Lucia & Santini, Monia & Chiti, Tommaso & Nolè, Angelo & Matteucci, Giorgio & Valentini, Riccardo, 2014. "A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy," Ecological Modelling, Elsevier, vol. 272(C), pages 362-378.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:426:y:2003:i:6967:d:10.1038_nature02174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.