IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i20p3662-3679.html
   My bibliography  Save this article

Optimization and evaluation of the ANTHRO-BGC model for winter crops in Europe

Author

Listed:
  • Ma, Shaoxiu
  • Churkina, Galina
  • Wieland, Ralf
  • Gessler, Arthur

Abstract

Climate change and agricultural development are interrelated processes, both of which take place on the global scale. An accurate representation of crop phenology and physiology in ecosystem models is important in order to investigate the interactive processes between atmosphere and biosphere. A new phenological model for crops has been recently incorporated into the ecosystem model BIOME-BGC. Fruit compartments as well as a module for harvest were added to the original model. Here we explore whether eddy flux measurements of agricultural ecosystems are helpful to identify the spatially generalized ecophysiological parameters of the ANTHRO-BGC model (updated BIOME-BGC model) for croplands. The maximum, minimum, and reference values of the ANTHRO-BGC parameters were derived from a literature review. The sensitive parameters of the model were detected by using global sensitivity analysis. The spatially generalized values of ecophysiological parameters for wheat, barley, and rape within a typical temperature and precipitation range in western and central Europe were identified with the help of optimization algorithms and eddy covariance measurements of carbon and water fluxes of agricultural ecosystems as observational constraints. Gross primary productivity (GPP) provided the best constraint on the model parameters for all the three crop types. The validity range of the parameter values defined by the literature review was proved to be reliable. The predictive ability of the optimized model has been improved for GPP and net ecosystem exchange (NEE), but not for evapotranspiration (ET). The performance of the ANTHRO-BGC model was comparable to the performances of other crop models such as DNDC, CERES-EGC, ORCHIDEE-STICS, and SPA model, tested on multiple sites. The optimized ANTHRO-BGC model was relatively stable in response to the variation of the parameters on multiple sites and years.

Suggested Citation

  • Ma, Shaoxiu & Churkina, Galina & Wieland, Ralf & Gessler, Arthur, 2011. "Optimization and evaluation of the ANTHRO-BGC model for winter crops in Europe," Ecological Modelling, Elsevier, vol. 222(20), pages 3662-3679.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:20:p:3662-3679
    DOI: 10.1016/j.ecolmodel.2011.08.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011004571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.08.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mo, Xingguo & Chen, Jing M. & Ju, Weimin & Black, T. Andrew, 2008. "Optimization of ecosystem model parameters through assimilating eddy covariance flux data with an ensemble Kalman filter," Ecological Modelling, Elsevier, vol. 217(1), pages 157-173.
    2. Tubiello, Francesco N. & Rosenzweig, Cynthia & Volk, Tyler, 1995. "Interactions of CO2, temperature and management practices: Simulations with a modified version of CERES-Wheat," Agricultural Systems, Elsevier, vol. 49(2), pages 135-152.
    3. Turley, Marianne C. & Ford, E. David, 2009. "Definition and calculation of uncertainty in ecological process models," Ecological Modelling, Elsevier, vol. 220(17), pages 1968-1983.
    4. Neville Nicholls, 1997. "Increased Australian wheat yield due to recent climate trends," Nature, Nature, vol. 387(6632), pages 484-485, May.
    5. Chiesi, M. & Maselli, F. & Moriondo, M. & Fibbi, L. & Bindi, M. & Running, S.W., 2007. "Application of BIOME-BGC to simulate Mediterranean forest processes," Ecological Modelling, Elsevier, vol. 206(1), pages 179-190.
    6. Di Vittorio, Alan V. & Anderson, Ryan S. & White, Joseph D. & Miller, Norman L. & Running, Steven W., 2010. "Development and optimization of an Agro-BGC ecosystem model for C4 perennial grasses," Ecological Modelling, Elsevier, vol. 221(17), pages 2038-2053.
    7. Mitchell, Stephen & Beven, Keith & Freer, Jim, 2009. "Multiple sources of predictive uncertainty in modeled estimates of net ecosystem CO2 exchange," Ecological Modelling, Elsevier, vol. 220(23), pages 3259-3270.
    8. Ana Iglesias & Luis Garrote & Sonia Quiroga & Marta Moneo, 2009. "Impacts of climate change in agriculture in Europe. PESETA-Agriculture study," JRC Research Reports JRC55386, Joint Research Centre.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hidy, D. & Barcza, Z. & Haszpra, L. & Churkina, G. & Pintér, K. & Nagy, Z., 2012. "Development of the Biome-BGC model for simulation of managed herbaceous ecosystems," Ecological Modelling, Elsevier, vol. 226(C), pages 99-119.
    2. Xenia Specka & Claas Nendel & Ralf Wieland, 2019. "Temporal Sensitivity Analysis of the MONICA Model: Application of Two Global Approaches to Analyze the Dynamics of Parameter Sensitivity," Agriculture, MDPI, vol. 9(2), pages 1-29, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    2. Govind, Ajit & Chen, Jing Ming & Bernier, Pierre & Margolis, Hank & Guindon, Luc & Beaudoin, Andre, 2011. "Spatially distributed modeling of the long-term carbon balance of a boreal landscape," Ecological Modelling, Elsevier, vol. 222(15), pages 2780-2795.
    3. González-Sanchis, Marí a & Del Campo, Antonio D. & Molina, Antonio J. & Fernandes, Tarcí sio J.G., 2015. "Modeling adaptive forest management of a semi-arid Mediterranean Aleppo pine plantation," Ecological Modelling, Elsevier, vol. 308(C), pages 34-44.
    4. Xingguo Mo & Ruiping Guo & Suxia Liu & Zhonghui Lin & Shi Hu, 2013. "Impacts of climate change on crop evapotranspiration with ensemble GCM projections in the North China Plain," Climatic Change, Springer, vol. 120(1), pages 299-312, September.
    5. Joshi, Niraj Prakash & Maharjan, Keshav Lall & Piya, Luni, 2011. "Effect of climate variables on yield of major food-crops in Nepal -A time-series analysis-," MPRA Paper 35379, University Library of Munich, Germany.
    6. Zhenhuan Liu & Guojie Zhang & Peng Yang, 2016. "Geographical Variation of Climate Change Impact on Rice Yield in the Rice-Cropping Areas of Northeast China during 1980–2008," Sustainability, MDPI, vol. 8(7), pages 1-12, July.
    7. Andrei Kirilenko & Nikolai Dronin, 2022. "Recent grain production boom in Russia in historical context," Climatic Change, Springer, vol. 171(3), pages 1-19, April.
    8. Sohail Abbas & Zulfiqar Ali Mayo, 2021. "Impact of temperature and rainfall on rice production in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1706-1728, February.
    9. Wang, Qinying & He, Hong S. & Liu, Kai & Zong, Shengwei & Du, Haibo, 2023. "Comparing simulated tree biomass from daily, monthly, and seasonal climate input of terrestrial ecosystem model," Ecological Modelling, Elsevier, vol. 483(C).
    10. Brunt, Liam, 2015. "Weather shocks and English wheat yields, 1690–1871," Explorations in Economic History, Elsevier, vol. 57(C), pages 50-58.
    11. Raul Caruso & Ilaria Petrarca & Roberto Ricciuti, 2014. "Climate Change, Rice Crops and Violence. Evidence from Indonesia," CESifo Working Paper Series 4665, CESifo.
    12. Wang, Teng & Yi, Fujin & Liu, Huilin & Wu, Ximing & Zhong, Funing, 2021. "Can Agricultural Mechanization Have a Mitigation Effect on China's Yield Variability?," 2021 Conference, August 17-31, 2021, Virtual 315098, International Association of Agricultural Economists.
    13. Ortiz, Carina & Karltun, Erik & Stendahl, Johan & Gärdenäs, Annemieke I. & Ågren, Göran I., 2011. "Modelling soil carbon development in Swedish coniferous forest soils—An uncertainty analysis of parameters and model estimates using the GLUE method," Ecological Modelling, Elsevier, vol. 222(17), pages 3020-3032.
    14. Taoyuan Wei & Solveig Glomsrød & Tianyi Zhang, 2017. "Extreme weather, food security and the capacity to adapt – the case of crops in China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 523-535, June.
    15. Juan-Carlos Ciscar & Antonio Soria & Clare M. Goodess & Ole B. Christensen & Ana Iglesias & Luis Garrote & Marta Moneo & Sonia Quiroga & Luc Feyen & Rutger Dankers & Robert Nicholls & Julie Richards &, 2009. "Climate change impacts in Europe. Final report of the PESETA research project," JRC Research Reports JRC55391, Joint Research Centre.
    16. Bagnara, Maurizio & Van Oijen, Marcel & Cameron, David & Gianelle, Damiano & Magnani, Federico & Sottocornola, Matteo, 2018. "Bayesian calibration of simple forest models with multiplicative mathematical structure: A case study with two Light Use Efficiency models in an alpine forest," Ecological Modelling, Elsevier, vol. 371(C), pages 90-100.
    17. Kima, Aimé Sévérin & Traore, Seydou & Wang, Yu-Min & Chung, Wen-Guey, 2014. "Multi-genes programing and local scale regression for analyzing rice yield response to climate factors using observed and downscaled data in Sahel," Agricultural Water Management, Elsevier, vol. 146(C), pages 149-162.
    18. Traore, Seydou & Zhang, Lei & Guven, Aytac & Fipps, Guy, 2020. "Rice yield response forecasting tool (YIELDCAST) for supporting climate change adaptation decision in Sahel," Agricultural Water Management, Elsevier, vol. 239(C).
    19. Hidy, D. & Barcza, Z. & Haszpra, L. & Churkina, G. & Pintér, K. & Nagy, Z., 2012. "Development of the Biome-BGC model for simulation of managed herbaceous ecosystems," Ecological Modelling, Elsevier, vol. 226(C), pages 99-119.
    20. He, Liming & Chen, Jing M. & Liu, Jane & Mo, Gang & Bélair, Stéphane & Zheng, Ting & Wang, Rong & Chen, Bin & Croft, Holly & Arain, M.Altaf & Barr, Alan G., 2014. "Optimization of water uptake and photosynthetic parameters in an ecosystem model using tower flux data," Ecological Modelling, Elsevier, vol. 294(C), pages 94-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:20:p:3662-3679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.