IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v256y2013icp6-15.html
   My bibliography  Save this article

Modeling biopore effects on root growth and biomass production on soils with pronounced sub-soil clay accumulation

Author

Listed:
  • Gaiser, Thomas
  • Perkons, Ute
  • Küpper, Paul Martin
  • Kautz, Timo
  • Uteau-Puschmann, Daniel
  • Ewert, Frank
  • Enders, Andreas
  • Krauss, Gunther

Abstract

Soils with subsoil clay accumulation account for more than 20% of the global land surface. These soils are characterized by vertical differences with respect to soil texture and increasing bulk density below the topsoil, which in turn affects root penetration into the subsoil. Biopores are preferential pathways for roots and assist in overcoming physical barriers like high density soil layers. An integration of these relationships into cropping systems models at the field scale is on-going. This paper presents a new approach to model the effect of biopores on root development in soils with clay accumulation at the plot scale. In this approach, the effect of biopores on root elongation rate depends on bulk density and on a biopore-root growth threshold (MPRT), which is the biopore volume at which the resistance of soil strength to root penetration is completely offset by the density of the biopores. The approach was integrated into a model solution of the model framework SIMPLACE (Scientific Impact assessment and Modeling PLatform for Advanced Crop and Ecosystem management). MPRT was parameterized for spring wheat using the inverse modeling approach based on root observations from a multi-factorial field experiment on a Haplic Luvisol. The observed biopore densities (>2mm diameter) were between 300 and 660poresm−2 (equivalent to a volumetric proportion of 0.38–0.83%) depending on the preceding crop. Observed soil bulk densities ranged between 1.31 and 1.62gcm−3. For spring wheat, the best fit between simulated and observed root densities in different layers was obtained with a MPRT of 0.023m3m−3 (equivalent to 2.3% of soil volume). The mean simulated total above ground biomass was sensitive to MPRT and had the best agreement with observed values when a MPRT between 0.023 and 0.032 m3m−3 was used in the simulations. Scenario simulations with the parameterized model at the same site demonstrate the importance of biopores for biomass production of short-cycle spring wheat when prolonged dry spells occur. The simulations allow a rough quantification of the biopore effects with respect to root elongation rate and biomass production at the plot scale with the potential to be extended to the field scale.

Suggested Citation

  • Gaiser, Thomas & Perkons, Ute & Küpper, Paul Martin & Kautz, Timo & Uteau-Puschmann, Daniel & Ewert, Frank & Enders, Andreas & Krauss, Gunther, 2013. "Modeling biopore effects on root growth and biomass production on soils with pronounced sub-soil clay accumulation," Ecological Modelling, Elsevier, vol. 256(C), pages 6-15.
  • Handle: RePEc:eee:ecomod:v:256:y:2013:i:c:p:6-15
    DOI: 10.1016/j.ecolmodel.2013.02.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013001002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.02.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, L. & McGechan, M.B. & McRoberts, N. & Baddeley, J.A. & Watson, C.A., 2007. "SPACSYS: Integration of a 3D root architecture component to carbon, nitrogen and water cycling—Model description," Ecological Modelling, Elsevier, vol. 200(3), pages 343-359.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Till Kuhn, David Schäfer, 2018. "A farm typology for North Rhine-Westphalia to assess agri-environmental policies," Discussion Papers 279702, University of Bonn, Institute for Food and Resource Economics.
    2. Srivastava, Amit Kumar & Mboh, Cho Miltin & Gaiser, Thomas & Webber, Heidi & Ewert, Frank, 2016. "Effect of sowing date distributions on simulation of maize yields at regional scale – A case study in Central Ghana, West Africa," Agricultural Systems, Elsevier, vol. 147(C), pages 10-23.
    3. Srivastava, Amit Kumar & Mboh, Cho Miltin & Gaiser, Thomas & Kuhn, Arnim & Ermias, Engida & Ewert, Frank, 2019. "Effect of mineral fertilizer on rain water and radiation use efficiencies for maize yield and stover biomass productivity in Ethiopia," Agricultural Systems, Elsevier, vol. 168(C), pages 88-100.
    4. Kuhn, T. & Enders, A. & Gaiser, T. & Schäfer, D. & Srivastava, A.K. & Britz, W., 2020. "Coupling crop and bio-economic farm modelling to evaluate the revised fertilization regulations in Germany," Agricultural Systems, Elsevier, vol. 177(C).
    5. Wolf, Joost & Kanellopoulos, Argyris & Kros, Johannes & Webber, Heidi & Zhao, Gang & Britz, Wolfgang & Reinds, Gert Jan & Ewert, Frank & de Vries, Wim, 2015. "Combined analysis of climate, technological and price changes on future arable farming systems in Europe," Agricultural Systems, Elsevier, vol. 140(C), pages 56-73.
    6. Gina Lopez & Hannah Beate Kolem & Amit Kumar Srivastava & Thomas Gaiser & Frank Ewert, 2019. "A Model-Based Estimation of Resource Use Efficiencies in Maize Production in Nigeria," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    7. Zimmermann, Andrea & Webber, Heidi & Zhao, Gang & Ewert, Frank & Kros, Johannes & Wolf, Joost & Britz, Wolfgang & de Vries, Wim, 2017. "Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements," Agricultural Systems, Elsevier, vol. 157(C), pages 81-92.
    8. Ahsan Raza & Hella Ahrends & Muhammad Habib-Ur-Rahman & Thomas Gaiser, 2021. "Modeling Approaches to Assess Soil Erosion by Water at the Field Scale with Special Emphasis on Heterogeneity of Soils and Crops," Land, MDPI, vol. 10(4), pages 1-35, April.
    9. Ermias Engida Legesse & Amit Kumar Srivastava & Arnim Kuhn & Thomas Gaiser, 2019. "Household Welfare Implications of Better Fertilizer Access and Lower Use Inefficiency: Long-Term Scenarios for Ethiopia," Sustainability, MDPI, vol. 11(14), pages 1-24, July.
    10. Oomen, Roelof J. & Ewert, Frank & Snyman, Hennie A., 2016. "Modelling rangeland productivity in response to degradation in a semi-arid climate," Ecological Modelling, Elsevier, vol. 322(C), pages 54-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Shan & Mingbin Huang & Paul Harris & Lianhai Wu, 2021. "A Sensitivity Analysis of the SPACSYS Model," Agriculture, MDPI, vol. 11(7), pages 1-30, July.
    2. Wu, L. & Harris, P. & Misselbrook, T.H. & Lee, M.R.F., 2022. "Simulating grazing beef and sheep systems," Agricultural Systems, Elsevier, vol. 195(C).
    3. Bown, James L. & Pachepsky, Elizaveta & Eberst, Alistair & Bausenwein, Ursula & Millard, Peter & Squire, Geoff R. & Crawford, John W., 2007. "Consequences of intraspecific variation for the structure and function of ecological communities," Ecological Modelling, Elsevier, vol. 207(2), pages 264-276.
    4. Höglind, Mats & Cameron, David & Persson, Tomas & Huang, Xiao & van Oijen, Marcel, 2020. "BASGRA_N: A model for grassland productivity, quality and greenhouse gas balance," Ecological Modelling, Elsevier, vol. 417(C).
    5. Wu, Lianhai & Curceac, Stelian & Atkinson, Peter M. & Milne, Alice & Harris, Paul, 2021. "A case study on the effects of data temporal resolution on the simulation of water flux extremes using a process-based model at the grassland field scale," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Kipling, Richard P. & Bannink, André & Bellocchi, Gianni & Dalgaard, Tommy & Fox, Naomi J. & Hutchings, Nicholas J. & Kjeldsen, Chris & Lacetera, Nicola & Sinabell, Franz & Topp, Cairistiona F.E. & va, 2016. "Modeling European ruminant production systems: Facing the challenges of climate change," Agricultural Systems, Elsevier, vol. 147(C), pages 24-37.
    7. Richard Morris & Shannon Davis & Gwen-Aëlle Grelet & Crile Doscher & Pablo Gregorini, 2024. "A Model for Spatially Explicit Landscape Configuration and Ecosystem Service Performance, ESMAX: Model Description and Explanation," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    8. Li, Songyang & Gao, Jixun & Zhu, Qingsheng & Zeng, Lingqiu & Liu, Ji, 2015. "A dynamic root simulation model in response to soil moisture heterogeneity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 113(C), pages 40-50.
    9. Yin, Xiaogang & Kersebaum, Kurt Christian & Kollas, Chris & Manevski, Kiril & Baby, Sanmohan & Beaudoin, Nicolas & Öztürk, Isik & Gaiser, Thomas & Wu, Lianhai & Hoffmann, Munir & Charfeddine, Monia & , 2017. "Performance of process-based models for simulation of grain N in crop rotations across Europe," Agricultural Systems, Elsevier, vol. 154(C), pages 63-77.
    10. Wu, Lianhai & Wu, Lu & Bingham, Ian J. & Misselbrook, Thomas H., 2022. "Projected climate effects on soil workability and trafficability determine the feasibility of converting permanent grassland to arable land," Agricultural Systems, Elsevier, vol. 203(C).
    11. Chuang Liu & Huiyi Yang & Kate Gongadze & Paul Harris & Mingbin Huang & Lianhai Wu, 2022. "Climate Change Impacts on Crop Yield of Winter Wheat ( Triticum aestivum ) and Maize ( Zea mays ) and Soil Organic Carbon Stocks in Northern China," Agriculture, MDPI, vol. 12(5), pages 1-12, April.
    12. Quan, Hao & Ding, Dianyuan & Wu, Lihong & Qiao, Ruonan & Dong, Qin'ge & Zhang, Tibin & Feng, Hao & Wu, Lianhai & Siddique, Kadambot H.M., 2022. "Future climate change impacts on mulched maize production in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 266(C).
    13. Lu Wu & Thomas H. Misselbrook & Liping Feng & Lianhai Wu, 2020. "Assessment of Nitrogen Uptake and Biological Nitrogen Fixation Responses of Soybean to Nitrogen Fertiliser with SPACSYS," Sustainability, MDPI, vol. 12(15), pages 1-17, July.
    14. Tyre, Andrew & Kerr, Gregory D. & Tenhumberg, Brigitte & Bull, C. Michael, 2007. "Identifying mechanistic models of spatial behaviour using pattern-based modelling: An example from lizard home ranges," Ecological Modelling, Elsevier, vol. 208(2), pages 307-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:256:y:2013:i:c:p:6-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.