IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v205y2023ics0921800922003639.html
   My bibliography  Save this article

Pests, wind and fire: A multi-hazard risk review for natural disturbances in forests

Author

Listed:
  • Bastit, Félix
  • Brunette, Marielle
  • Montagné-Huck, Claire

Abstract

Natural disturbances are paramount in the development of ecosystems but may jeopardise the provision of forest ecosystem services. Climate change exacerbates this threat and favours interactions between disturbances. Our objective was thus to capture this dimension of multiple disturbances in forest economics through a literature review. We built a database that encompasses 101 English peer-reviewed articles published between 1916 and 2020. We looked at the relationships between six main natural hazards: fire, windstorm, drought, ice/snow, insects and pathogens/disease. Our results indicate that the most frequent pairs of hazards analysed together are “Wind-Insects” in Europe and “Fire-Insects” in North America. We show that most economic studies assume that natural hazards are independent of each other and could thus miss some of the effects of changing hazard regimes, contrary to ecology-oriented articles. Finally, we suggest creating bridges between the ecology and economics of forest disturbances in order to refine current models of each discipline with the tools provided by the other discipline, especially in the critical context of climate change.

Suggested Citation

  • Bastit, Félix & Brunette, Marielle & Montagné-Huck, Claire, 2023. "Pests, wind and fire: A multi-hazard risk review for natural disturbances in forests," Ecological Economics, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:ecolec:v:205:y:2023:i:c:s0921800922003639
    DOI: 10.1016/j.ecolecon.2022.107702
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800922003639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2022.107702?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buongiorno, Joseph & Zhou, Mo, 2011. "Further generalization of Faustmann's formula for stochastic interest rates," Journal of Forest Economics, Elsevier, vol. 17(3), pages 248-257, August.
    2. Dai, Yongwu & Chang, Hung-Hao & Liu, Weiping, 2015. "Do forest producers benefit from the forest disaster insurance program? Empirical evidence in Fujian Province of China," Forest Policy and Economics, Elsevier, vol. 50(C), pages 127-133.
    3. Eric Nazindigouba KERE & Jérôme FONCEL & Marielle BRUNETTE, 2014. "Attitude towards Risk and Production Decision: An Empirical analysis on French private forest owners," Working Papers 201410, CERDI.
    4. Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
    5. Sacchelli, Sandro & Cipollaro, Maria & Fabbrizzi, Sara, 2018. "A GIS-based model for multiscale forest insurance analysis: The Italian case study," Forest Policy and Economics, Elsevier, vol. 92(C), pages 106-118.
    6. Montagné-Huck, Claire & Brunette, Marielle, 2018. "Economic analysis of natural forest disturbances: A century of research," Journal of Forest Economics, Elsevier, vol. 32(C), pages 42-71.
    7. Lewandrowski, Jan & Kim, C.S. & Aillery, Marcel, 2014. "Carbon sequestration through afforestation under uncertainty," Forest Policy and Economics, Elsevier, vol. 38(C), pages 90-96.
    8. Patrice Loisel & Marielle Brunette & Stéphane Couture, 2020. "Insurance and Forest Rotation Decisions Under Storm Risk," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(2), pages 347-367, July.
    9. Xu, Ying & Amacher, Gregory S. & Sullivan, Jay, 2016. "Optimal forest management with sequential disturbances," Journal of Forest Economics, Elsevier, vol. 24(C), pages 106-122.
    10. Ching-Rong Lin & Joseph Buongiorno, 1998. "Tree Diversity, Landscape Diversity, and Economics of Maple-Birch Forests: Implications of Markovian Models," Management Science, INFORMS, vol. 44(10), pages 1351-1366, October.
    11. Brèteau-Amores, Sandrine & Brunette, Marielle & Davi, Hendrik, 2019. "An Economic Comparison of Adaptation Strategies Towards a Drought-induced Risk of Forest Decline," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    12. Knoke, Thomas & Kindu, Mengistie & Jarisch, Isabelle & Gosling, Elizabeth & Friedrich, Stefan & Bödeker, Kai & Paul, Carola, 2020. "How considering multiple criteria, uncertainty scenarios and biological interactions may influence the optimal silvicultural strategy for a mixed forest," Forest Policy and Economics, Elsevier, vol. 118(C).
    13. Charles A. Holt & Susan K. Laury, 2002. "Risk Aversion and Incentive Effects," American Economic Review, American Economic Association, vol. 92(5), pages 1644-1655, December.
    14. Knoke, Thomas, 2008. "Mixed forests and finance -- Methodological approaches," Ecological Economics, Elsevier, vol. 65(3), pages 590-601, April.
    15. Komarek, Adam M. & De Pinto, Alessandro & Smith, Vincent H., 2020. "A review of types of risks in agriculture: What we know and what we need to know," Agricultural Systems, Elsevier, vol. 178(C).
    16. M. Brunette & M. Hanewinkel & R. Yousefpour, 2020. "Risk aversion hinders forestry professionals to adapt to climate change," Climatic Change, Springer, vol. 162(4), pages 2157-2180, October.
    17. Halbritter, Andreas & Deegen, Peter & Susaeta, Andres, 2020. "An economic analysis of thinnings and rotation lengths in the presence of natural risks in even-aged forest stands," Forest Policy and Economics, Elsevier, vol. 118(C).
    18. Roessiger, Joerg & Griess, Verena C. & Härtl, Fabian & Clasen, Christian & Knoke, Thomas, 2013. "How economic performance of a stand increases due to decreased failure risk associated with the admixing of species," Ecological Modelling, Elsevier, vol. 255(C), pages 58-69.
    19. Marielle Brunette & Laure Cabantous & Stéphane Couture & Anne Stenger, 2013. "The impact of governmental assistance on insurance demand under ambiguity: a theoretical model and an experimental test," Theory and Decision, Springer, vol. 75(2), pages 153-174, August.
    20. Petucco, Claudio & Andrés-Domenech, Pablo, 2018. "Land expectation value and optimal rotation age of maritime pine plantations under multiple risks," Journal of Forest Economics, Elsevier, vol. 30(C), pages 58-70.
    21. Christophe Courbage & Henri Loubergé & Richard Peter, 2017. "Optimal Prevention for Multiple Risks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(3), pages 899-922, September.
    22. Anna Jönsson & Fredrik Lagergren & Benjamin Smith, 2015. "Forest management facing climate change - an ecosystem model analysis of adaptation strategies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(2), pages 201-220, February.
    23. Sauter, Philipp A. & Möllmann, Torsten B. & Anastassiadis, Friederike & Mußhoff, Oliver & Möhring, Bernhard, 2016. "To insure or not to insure? Analysis of foresters' willingness-to-pay for fire and storm insurance," Forest Policy and Economics, Elsevier, vol. 73(C), pages 78-89.
    24. Rupert Seidl & Dominik Thom & Markus Kautz & Dario Martin-Benito & Mikko Peltoniemi & Giorgio Vacchiano & Jan Wild & Davide Ascoli & Michal Petr & Juha Honkaniemi & Manfred J. Lexer & Volodymyr Trotsi, 2017. "Forest disturbances under climate change," Nature Climate Change, Nature, vol. 7(6), pages 395-402, June.
    25. Claire Montagné-Huck & Marielle Brunette, 2018. "A Bibliographic Database on Economic Analysis of Natural Forest Disturbances," Post-Print hal-02091626, HAL.
    26. Jeffrey P. Prestemon & Thomas P. Holmes, 2000. "Timber Price Dynamics Following a Natural Catastrophe," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(1), pages 145-160.
    27. Cornelius Senf & Allan Buras & Christian S. Zang & Anja Rammig & Rupert Seidl, 2020. "Excess forest mortality is consistently linked to drought across Europe," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    28. Qin, Tao & Gu, Xuesong & Tian, Zhiwei & Pan, Huanxue & Deng, Jing & Wan, Li, 2016. "An empirical analysis of the factors influencing farmer demand for forest insurance: Based on surveys from Lin’an County in Zhejiang Province of China," Journal of Forest Economics, Elsevier, vol. 24(C), pages 37-51.
    29. Yin, Runsheng & Newman, David H., 1996. "The Effect of Catastrophic Risk on Forest Investment Decisions," Journal of Environmental Economics and Management, Elsevier, vol. 31(2), pages 186-197, September.
    30. Reed, William J., 1984. "The effects of the risk of fire on the optimal rotation of a forest," Journal of Environmental Economics and Management, Elsevier, vol. 11(2), pages 180-190, June.
    31. Notaro, Sandra & Paletto, Alessandro, 2012. "The economic valuation of natural hazards in mountain forests: An approach based on the replacement cost method," Journal of Forest Economics, Elsevier, vol. 18(4), pages 318-328.
    32. Holecy, Jan & Hanewinkel, Marc, 2006. "A forest management risk insurance model and its application to coniferous stands in southwest Germany," Forest Policy and Economics, Elsevier, vol. 8(2), pages 161-174, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Félix Bastit & David W. Shanafelt & Marielle Brunette, 2023. "Stability and resilience of a forest bio-economic equilibrium under natural disturbances," Working Papers of BETA 2023-18, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    2. Brèteau-Amores, Sandrine & Yousefpour, Rasoul & Hanewinkel, Marc & Fortin, Mathieu, 2023. "Forest adaptation strategies to reconcile timber production and carbon sequestration objectives under multiple risks of extreme drought and windstorm events," Ecological Economics, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Félix Bastit & Marielle Brunette & Claire Montagne-Huck, 2021. "Earth, wind and fire: A multi-hazard risk review for natural disturbances in forests," Working Papers of BETA 2021-25, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    2. Patrice Loisel & Marielle Brunette & Stéphane Couture, 2020. "Insurance and Forest Rotation Decisions Under Storm Risk," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(2), pages 347-367, July.
    3. Sauter, Philipp A. & Möllmann, Torsten B. & Anastassiadis, Friederike & Mußhoff, Oliver & Möhring, Bernhard, 2016. "To insure or not to insure? Analysis of foresters' willingness-to-pay for fire and storm insurance," Forest Policy and Economics, Elsevier, vol. 73(C), pages 78-89.
    4. Thomas, J. & Brunette, M. & Leblois, A., 2022. "The determinants of adapting forest management practices to climate change: Lessons from a survey of French private forest owners," Forest Policy and Economics, Elsevier, vol. 135(C).
    5. Feng, Xin & Dai, Yongwu, 2019. "An innovative type of forest insurance in China based on the robust approach," Forest Policy and Economics, Elsevier, vol. 104(C), pages 23-32.
    6. Julie Thomas & Marielle Brunette & Antoine Leblois, 2021. "Adapting forest management practices to climate change : Lessons from a survey of French private forest owners," Working Papers hal-03142772, HAL.
    7. M. Brunette & S. Couture & J. Foncel & S. Garcia, 2020. "The decision to insure against forest fire risk: an econometric analysis combining hypothetical real data," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(1), pages 111-133, January.
    8. Brèteau-Amores, Sandrine & Yousefpour, Rasoul & Hanewinkel, Marc & Fortin, Mathieu, 2023. "Forest adaptation strategies to reconcile timber production and carbon sequestration objectives under multiple risks of extreme drought and windstorm events," Ecological Economics, Elsevier, vol. 212(C).
    9. M. Brunette & M. Hanewinkel & R. Yousefpour, 2020. "Risk aversion hinders forestry professionals to adapt to climate change," Climatic Change, Springer, vol. 162(4), pages 2157-2180, October.
    10. Friedrich, Stefan & Paul, Carola & Brandl, Susanne & Biber, Peter & Messerer, Katharina & Knoke, Thomas, 2019. "Economic impact of growth effects in mixed stands of Norway spruce and European beech – A simulation based study," Forest Policy and Economics, Elsevier, vol. 104(C), pages 65-80.
    11. Yiling Deng & Ian A. Munn & Haibo Yao, 2021. "Attributes‐based conjoint analysis of landowner preferences for standing timber insurance," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(4), pages 421-444, December.
    12. Knoke, Thomas & Gosling, Elizabeth & Thom, Dominik & Chreptun, Claudia & Rammig, Anja & Seidl, Rupert, 2021. "Economic losses from natural disturbances in Norway spruce forests – A quantification using Monte-Carlo simulations," Ecological Economics, Elsevier, vol. 185(C).
    13. Ekholm, Tommi, 2020. "Optimal forest rotation under carbon pricing and forest damage risk," Forest Policy and Economics, Elsevier, vol. 115(C).
    14. Félix Bastit & David W. Shanafelt & Marielle Brunette, 2023. "Stability and resilience of a forest bio-economic equilibrium under natural disturbances," Working Papers of BETA 2023-18, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    15. Cipollaro, Maria & Sacchelli, Sandro, 2018. "Demand and potential subsidy level for forest insurance market in Demand and potential subsidy level for forest insurance market in Italy," 2018 Seventh AIEAA Conference, June 14-15, Conegliano, Italy 275647, Italian Association of Agricultural and Applied Economics (AIEAA).
    16. Sacchelli, Sandro & Cipollaro, Maria & Fabbrizzi, Sara, 2018. "A GIS-based model for multiscale forest insurance analysis: The Italian case study," Forest Policy and Economics, Elsevier, vol. 92(C), pages 106-118.
    17. Peter John Robinson & W. J. Wouter Botzen & Fujin Zhou, 2021. "An experimental study of charity hazard: The effect of risky and ambiguous government compensation on flood insurance demand," Journal of Risk and Uncertainty, Springer, vol. 63(3), pages 275-318, December.
    18. Brunette, M. & Holecy, J. & Sedliak, M. & Tucek, J. & Hanewinkel, M., 2015. "An actuarial model of forest insurance against multiple natural hazards in fir (Abies Alba Mill.) stands in Slovakia," Forest Policy and Economics, Elsevier, vol. 55(C), pages 46-57.
    19. Marielle Brunette & Stephane Couture, 2018. "Risk management activities of a non-industrial privateforest owner with a bivariate utility function," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 99(3-4), pages 281-302.
    20. Sylvain Caurla & Antonello Lobianco, 2020. "Estimating climate service value in forestry : The case of climate information on drought for maritime pine in Southwestern France," Post-Print hal-03639335, HAL.

    More about this item

    Keywords

    Multi-hazard risk; Interaction; Economics; Management; Ecology; Review; Forest;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:205:y:2023:i:c:s0921800922003639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.