IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v30y2013icp30-35.html
   My bibliography  Save this article

A note on the use of fractional Brownian motion for financial modeling

Author

Listed:
  • Rostek, S.
  • Schöbel, R.

Abstract

In the second part of the past decade, the usage of fractional Brownian motion for financial models was stuck. The favorable time-series properties of fractional Brownian motion exhibiting long-range dependence came along with an apparently insuperable shortcoming: the existence of arbitrage. Within the last two years, several new models using fractional Brownian motion have been published. However, still the problem remains unsolved whether such models are reasonable choices from an economic perspective.

Suggested Citation

  • Rostek, S. & Schöbel, R., 2013. "A note on the use of fractional Brownian motion for financial modeling," Economic Modelling, Elsevier, vol. 30(C), pages 30-35.
  • Handle: RePEc:eee:ecmode:v:30:y:2013:i:c:p:30-35
    DOI: 10.1016/j.econmod.2012.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999312002787
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2012.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sottinen Tommi & Valkeila Esko, 2003. "On arbitrage and replication in the fractional Black–Scholes pricing model," Statistics & Risk Modeling, De Gruyter, vol. 21(2/2003), pages 93-108, February.
    2. Robert J. Elliott & John Van Der Hoek, 2003. "A General Fractional White Noise Theory And Applications To Finance," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 301-330, April.
    3. Fred Espen Benth, 2003. "On arbitrage-free pricing of weather derivatives based on fractional Brownian motion," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(4), pages 303-324.
    4. Tommi Sottinen, 2001. "Fractional Brownian motion, random walks and binary market models," Finance and Stochastics, Springer, vol. 5(3), pages 343-355.
    5. Tomas Björk & Henrik Hult, 2005. "A note on Wick products and the fractional Black-Scholes model," Finance and Stochastics, Springer, vol. 9(2), pages 197-209, April.
    6. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xi-Li & Wang, Ying-Luo, 2010. "Pricing currency options in a fractional Brownian motion with jumps," Economic Modelling, Elsevier, vol. 27(5), pages 935-942, September.
    7. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    8. Cipian Necula, 2008. "Option Pricing in a Fractional Brownian Motion Environment," Advances in Economic and Financial Research - DOFIN Working Paper Series 2, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    9. Gu, Hui & Liang, Jin-Rong & Zhang, Yun-Xiu, 2012. "Time-changed geometric fractional Brownian motion and option pricing with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3971-3977.
    10. Erhan Bayraktar & Ulrich Horst & Ronnie Sircar, 2006. "A Limit Theorem for Financial Markets with Inert Investors," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 789-810, November.
    11. Li Meng & Mei Wang, 2010. "Comparison of Black–Scholes Formula with Fractional Black–Scholes Formula in the Foreign Exchange Option Market with Changing Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(2), pages 99-111, June.
    12. Stefan Rostek, 2009. "Option Pricing in Fractional Brownian Markets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-00331-8, October.
    13. Sethi, Suresh P. & Lehoczky, John P., 1981. "A comparison of the Ito and Stratonovich formulations of problems in finance," Journal of Economic Dynamics and Control, Elsevier, vol. 3(1), pages 343-356, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    2. Cadoni, Marinella & Melis, Roberta & Trudda, Alessandro, 2017. "Pension funds rules: Paradoxes in risk control," Finance Research Letters, Elsevier, vol. 22(C), pages 20-29.
    3. Calisse, Frank, 2019. "The impact of long-range dependence in the capital stock on interest rate and wealth distribution," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203591, Verein für Socialpolitik / German Economic Association.
    4. Ahmadian, D. & Ballestra, L.V., 2020. "Pricing geometric Asian rainbow options under the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    5. Alexander Kukush & Stanislav Lohvinenko & Yuliya Mishura & Kostiantyn Ralchenko, 2022. "Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 159-187, April.
    6. Foad Shokrollahi & Davood Ahmadian & Luca Vincenzo Ballestra, 2021. "Actuarial strategy for pricing Asian options under a mixed fractional Brownian motion with jumps," Papers 2105.06999, arXiv.org.
    7. Kohei Hayashi & Kei Nakagawa, 2022. "Fractional SDE-Net: Generation of Time Series Data with Long-term Memory," Papers 2201.05974, arXiv.org, revised Aug 2022.
    8. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    9. Liu, Song & Yang, Ran & Li, Xiaoyan & Xiao, Jian, 2021. "Global attractiveness and consensus for Riemann–Liouville’s nonlinear fractional systems with mixed time-delays," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    10. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    11. Yu-Sheng Hsu & Pei-Chun Chen & Cheng-Hsun Wu, 2020. "The Optimal Limit Prices of Limit Orders under an Extended Geometric Brownian Motion with Bankruptcy Risk," Mathematics, MDPI, vol. 9(1), pages 1-13, December.
    12. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    13. Zhang, Pu & Sun, Qi & Xiao, Wei-Lin, 2014. "Parameter identification in mixed Brownian–fractional Brownian motions using Powell's optimization algorithm," Economic Modelling, Elsevier, vol. 40(C), pages 314-319.
    14. Wang, Lu & Zhang, Rong & Yang, Lin & Su, Yang & Ma, Feng, 2018. "Pricing geometric Asian rainbow options under fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 8-16.
    15. Liu, Zhibin & Huang, Shan, 2021. "Carbon option price forecasting based on modified fractional Brownian motion optimized by GARCH model in carbon emission trading," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    16. Kerstin Lamert & Benjamin R. Auer & Ralf Wunderlich, 2023. "Discretization of continuous-time arbitrage strategies in financial markets with fractional Brownian motion," Papers 2311.15635, arXiv.org.
    17. Manley, Bruce & Niquidet, Kurt, 2017. "How does real option value compare with Faustmann value when log prices follow fractional Brownian motion?," Forest Policy and Economics, Elsevier, vol. 85(P1), pages 76-84.
    18. Rodríguez-Aguilar, Román & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2014. "A Measure of Early Warning of Exchange-Rate Crises Based on the Hurst Coefficient and the Αlpha-Stable Parameter," MPRA Paper 59046, University Library of Munich, Germany.
    19. Stijn De Backer & Luis E. C. Rocha & Jan Ryckebusch & Koen Schoors, 2024. "On the potential of quantum walks for modeling financial return distributions," Papers 2403.19502, arXiv.org.
    20. Axel A. Araneda, 2019. "The fractional and mixed-fractional CEV model," Papers 1903.05747, arXiv.org, revised Jun 2019.
    21. Farshid Mehrdoust & Ali Reza Najafi, 2018. "Pricing European Options under Fractional Black–Scholes Model with a Weak Payoff Function," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 685-706, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019. "Pricing Derivatives In Hermite Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
    2. Stoyan V. Stoyanov & Yong Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2017. "Option pricing for Informed Traders," Papers 1711.09445, arXiv.org.
    3. Rostek, Stefan & Schöbel, Rainer, 2006. "Risk preference based option pricing in a fractional Brownian market," Tübinger Diskussionsbeiträge 299, University of Tübingen, School of Business and Economics.
    4. Christian Bender & Tommi Sottinen & Esko Valkeila, 2010. "Fractional processes as models in stochastic finance," Papers 1004.3106, arXiv.org.
    5. Calisse, Frank, 2019. "The impact of long-range dependence in the capital stock on interest rate and wealth distribution," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203591, Verein für Socialpolitik / German Economic Association.
    6. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
    7. Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
    8. Hideharu Funahashi & Masaaki Kijima, 2017. "Does the Hurst index matter for option prices under fractional volatility?," Annals of Finance, Springer, vol. 13(1), pages 55-74, February.
    9. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, June.
    10. Changhong Guo & Shaomei Fang & Yong He, 2023. "A Generalized Stochastic Process: Fractional G-Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-34, March.
    11. Wang, Xiao-Tian, 2011. "Scaling and long-range dependence in option pricing V: Multiscaling hedging and implied volatility smiles under the fractional Black–Scholes model with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1623-1634.
    12. Vilela Mendes, R. & Oliveira, M.J. & Rodrigues, A.M., 2015. "No-arbitrage, leverage and completeness in a fractional volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 470-478.
    13. Azmoodeh Ehsan & Mishura Yuliya & Valkeila Esko, 2009. "On hedging European options in geometric fractional Brownian motion market model," Statistics & Risk Modeling, De Gruyter, vol. 27(2), pages 129-144, December.
    14. Xiao, Weilin & Zhang, Weiguo & Xu, Weijun & Zhang, Xili, 2012. "The valuation of equity warrants in a fractional Brownian environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1742-1752.
    15. Changhong Guo & Shaomei Fang & Yong He, 2023. "Derivation and Application of Some Fractional Black–Scholes Equations Driven by Fractional G-Brownian Motion," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1681-1705, April.
    16. Foad Shokrollahi, 2018. "Pricing European option with the short rate under Subdiffusive fractional Brownian motion regime," Papers 1805.00792, arXiv.org.
    17. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    18. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    19. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    20. Axel A. Araneda, 2019. "The fractional and mixed-fractional CEV model," Papers 1903.05747, arXiv.org, revised Jun 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:30:y:2013:i:c:p:30-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.