IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v91y2015icp40-50.html
   My bibliography  Save this article

Joint latent class model of survival and longitudinal data: An application to CPCRA study

Author

Listed:
  • Liu, Yue
  • Liu, Lei
  • Zhou, Jianhui

Abstract

There has been an increasing interest in the joint analysis of repeated measures and time to event data. In many studies, there could also exist heterogeneous subgroups. Thus a new model is proposed for the joint analysis of longitudinal and survival data with underlying subpopulations identified by latent class model. Within each latent class, a joint model of longitudinal and survival data with shared random effects is adopted. The proposed model is applied to Terry Beirn Community Programs for Clinical Research on AIDS study (CPCRA) to characterize the underlying heterogeneity of the cohort and to study the relation between longitudinal CD4 measures and time to death. The proposed model is desirable when the heterogeneity among subjects cannot be ignored and both the longitudinal and survival outcomes are of interest.

Suggested Citation

  • Liu, Yue & Liu, Lei & Zhou, Jianhui, 2015. "Joint latent class model of survival and longitudinal data: An application to CPCRA study," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 40-50.
  • Handle: RePEc:eee:csdana:v:91:y:2015:i:c:p:40-50
    DOI: 10.1016/j.csda.2015.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315001346
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    2. Lin H. & Turnbull B. W. & McCulloch C. E. & Slate E. H., 2002. "Latent Class Models for Joint Analysis of Longitudinal Biomarker and Event Process Data: Application to Longitudinal Prostate-Specific Antigen Readings and Prostate Cancer," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 53-65, March.
    3. Guo X. & Carlin B.P., 2004. "Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages," The American Statistician, American Statistical Association, vol. 58, pages 16-24, February.
    4. Caroline Beunckens & Geert Molenberghs & Geert Verbeke & Craig Mallinckrodt, 2008. "A Latent-Class Mixture Model for Incomplete Longitudinal Gaussian Data," Biometrics, The International Biometric Society, vol. 64(1), pages 96-105, March.
    5. Hélène Jacqmin-Gadda & Cécile Proust-Lima & Jeremy M.G. Taylor & Daniel Commenges, 2010. "Score Test for Conditional Independence Between Longitudinal Outcome and Time to Event Given the Classes in the Joint Latent Class Model," Biometrics, The International Biometric Society, vol. 66(1), pages 11-19, March.
    6. Lei Liu & Xuelin Huang, 2009. "Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 65-81, February.
    7. Bengt Muthén & Kerby Shedden, 1999. "Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm," Biometrics, The International Biometric Society, vol. 55(2), pages 463-469, June.
    8. Klaus Larsen, 2004. "Joint Analysis of Time-to-Event and Multiple Binary Indicators of Latent Classes," Biometrics, The International Biometric Society, vol. 60(1), pages 85-92, March.
    9. Liu, Lei & Strawderman, Robert L. & Cowen, Mark E. & Shih, Ya-Chen T., 2010. "A flexible two-part random effects model for correlated medical costs," Journal of Health Economics, Elsevier, vol. 29(1), pages 110-123, January.
    10. Francisca Galindo Garre & Aeilko H. Zwinderman & Ronald B. Geskus & Yvo W. J. Sijpkens, 2008. "A joint latent class changepoint model to improve the prediction of time to graft failure," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 299-308, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng Zheng & Lei Liu, 2022. "Quantifying direct and indirect effect for longitudinal mediator and survival outcome using joint modeling approach," Biometrics, The International Biometric Society, vol. 78(3), pages 1233-1243, September.
    2. Beom Seuk Hwang & Zhen Chen & Germaine M. Buck Louis & Paul S. Albert, 2019. "A Bayesian multi‐dimensional couple‐based latent risk model with an application to infertility," Biometrics, The International Biometric Society, vol. 75(1), pages 315-325, March.
    3. Jiehuan Sun & Jose D. Herazo‐Maya & Philip L. Molyneaux & Toby M. Maher & Naftali Kaminski & Hongyu Zhao, 2019. "Regularized Latent Class Model for Joint Analysis of High‐Dimensional Longitudinal Biomarkers and a Time‐to‐Event Outcome," Biometrics, The International Biometric Society, vol. 75(1), pages 69-77, March.
    4. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    2. Jaeun Choi & Donglin Zeng & Andrew F. Olshan & Jianwen Cai, 2018. "Joint modeling of survival time and longitudinal outcomes with flexible random effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 126-152, January.
    3. Proust-Lima, Cécile & Philipps, Viviane & Liquet, Benoit, 2017. "Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package lcmm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i02).
    4. Jiehuan Sun & Jose D. Herazo‐Maya & Philip L. Molyneaux & Toby M. Maher & Naftali Kaminski & Hongyu Zhao, 2019. "Regularized Latent Class Model for Joint Analysis of High‐Dimensional Longitudinal Biomarkers and a Time‐to‐Event Outcome," Biometrics, The International Biometric Society, vol. 75(1), pages 69-77, March.
    5. Proust-Lima, Cécile & Joly, Pierre & Dartigues, Jean-François & Jacqmin-Gadda, Hélène, 2009. "Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1142-1154, February.
    6. Rizopoulos, Dimitris, 2016. "The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i07).
    7. Eleni†Rosalina Andrinopoulou & Paul H. C. Eilers & Johanna J. M. Takkenberg & Dimitris Rizopoulos, 2018. "Improved dynamic predictions from joint models of longitudinal and survival data with time†varying effects using P†splines," Biometrics, The International Biometric Society, vol. 74(2), pages 685-693, June.
    8. Michael J. Crowther & Keith R. Abrams & Paul C. Lambert, 2013. "Joint modeling of longitudinal and survival data," Stata Journal, StataCorp LP, vol. 13(1), pages 165-184, March.
    9. Dimitris Rizopoulos & Laura A. Hatfield & Bradley P. Carlin & Johanna J. M. Takkenberg, 2014. "Combining Dynamic Predictions From Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1385-1397, December.
    10. Han, Jun, 2009. "Initial classification of joint data in EM estimation of latent class joint model," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2313-2323, November.
    11. Xavier Piulachs & Ramon Alemany & Montserrat Guillen, 2014. "A joint longitudinal and survival model with health care usage for insured elderly," Working Papers 2014-07, Universitat de Barcelona, UB Riskcenter.
    12. Bartolucci, Al & Bae, Sejong & Singh, Karan & Griffith, H. Randall, 2009. "An examination of Bayesian statistical approaches to modeling change in cognitive decline in an Alzheimer's disease population," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(3), pages 561-571.
    13. Beom Seuk Hwang & Zhen Chen & Germaine M. Buck Louis & Paul S. Albert, 2019. "A Bayesian multi‐dimensional couple‐based latent risk model with an application to infertility," Biometrics, The International Biometric Society, vol. 75(1), pages 315-325, March.
    14. M. H. Hof & J. Z. Musoro & R. B. Geskus & G. H. Struijk & I. J. M. ten Berge & A. H. Zwinderman, 2017. "Simulated maximum likelihood estimation in joint models for multiple longitudinal markers and recurrent events of multiple types, in the presence of a terminal event," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2756-2777, November.
    15. Marco Guerra & Francesca Bassi & José G. Dias, 2020. "A Multiple-Indicator Latent Growth Mixture Model to Track Courses with Low-Quality Teaching," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 361-381, January.
    16. Na Cai & Wenbin Lu & Hao Helen Zhang, 2012. "Time-Varying Latent Effect Model for Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 68(4), pages 1093-1102, December.
    17. Michael Prendergast & David Huang & Yih-Ing Hser, 2008. "Patterns of Crime and Drug Use Trajectories in Relation to Treatment Initiation and 5-Year Outcomes," Evaluation Review, , vol. 32(1), pages 59-82, February.
    18. Silvia Bacci & Francesco Bartolucci & Giulia Bettin & Claudia Pigini, 2017. "A mixture growth model for migrants' remittances: An application to the German Socio-Economic Panel," Mo.Fi.R. Working Papers 145, Money and Finance Research group (Mo.Fi.R.) - Univ. Politecnica Marche - Dept. Economic and Social Sciences.
    19. Patrick Sturgis & Louise Sullivan, 2008. "Exploring social mobility with latent trajectory groups," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 65-88, January.
    20. Getachew A. Dagne, 2016. "A growth mixture Tobit model: application to AIDS studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(7), pages 1174-1185, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:91:y:2015:i:c:p:40-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.