IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i7p1174-1185.html
   My bibliography  Save this article

A growth mixture Tobit model: application to AIDS studies

Author

Listed:
  • Getachew A. Dagne

Abstract

This paper presents an alternative analysis approach to modeling data where a lower detection limit (LOD) and unobserved population heterogeneity exist in a longitudinal data set. Longitudinal data on viral loads in HIV/AIDS studies, for instance, show strong positive skewness and left-censoring. Normalizing such data using a logarithmic transformation seems to be unsuccessful. An alternative to such a transformation is to use a finite mixture model which is suitable for analyzing data which have skewed or multi-modal distributions. There is little work done to simultaneously take into account these features of longitudinal data. This paper develops a growth mixture Tobit model that deals with a LOD and heterogeneity among growth trajectories. The proposed methods are illustrated using simulated and real data from an AIDS clinical study.

Suggested Citation

  • Getachew A. Dagne, 2016. "A growth mixture Tobit model: application to AIDS studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(7), pages 1174-1185, July.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:7:p:1174-1185
    DOI: 10.1080/02664763.2015.1092114
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1092114
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1092114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James P. Hughes, 1999. "Mixed Effects Models with Censored Data with Application to HIV RNA Levels," Biometrics, The International Biometric Society, vol. 55(2), pages 625-629, June.
    2. Bengt Muthén & Kerby Shedden, 1999. "Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm," Biometrics, The International Biometric Society, vol. 55(2), pages 463-469, June.
    3. repec:awi:wpaper:0417 is not listed on IDEAS
    4. Murray Aitkin, 1999. "A General Maximum Likelihood Analysis of Variance Components in Generalized Linear Models," Biometrics, The International Biometric Society, vol. 55(1), pages 117-128, March.
    5. Amemiya, Takeshi, 1984. "Tobit models: A survey," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 3-61.
    6. Wendelin Schnedler, 2005. "Likelihood Estimation for Censored Random Vectors," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 195-217.
    7. Wu L., 2002. "A Joint Model for Nonlinear Mixed-Effects Models With Censoring and Covariates Measured With Error, With Application to AIDS Studies," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 955-964, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingting Yu & Lang Wu & Peter Gilbert, 2019. "New approaches for censored longitudinal data in joint modelling of longitudinal and survival data, with application to HIV vaccine studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 229-258, April.
    2. Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
    3. Hongbin Zhang & Lang Wu, 2018. "A non‐linear model for censored and mismeasured time varying covariates in survival models, with applications in human immunodeficiency virus and acquired immune deficiency syndrome studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1437-1450, November.
    4. Samson, Adeline & Lavielle, Marc & Mentre, France, 2006. "Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1562-1574, December.
    5. Dagne Getachew & Huang Yangxin, 2012. "Bayesian inference for a nonlinear mixed-effects Tobit model with multivariate skew-t distributions: application to AIDS studies," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-24, September.
    6. Xiaosun Lu & Yangxin Huang & Rong Zhou, 2016. "Joint analysis of nonlinear heterogeneous longitudinal data and binary outcome: an application to AIDS clinical studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2713-2728, November.
    7. Brian Francis & Jiayi Liu, 2015. "Modelling escalation in crime seriousness: a latent variable approach," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 277-297, August.
    8. Biørn, Erik & Wangen, Knut R., 2012. "New Taxonomies for Limited Dependent Variables Models," MPRA Paper 41461, University Library of Munich, Germany.
    9. Mònica González & Germà Coenders & Marc Saez & Ferran Casas, 2010. "Non-linearity, Complexity and Limited Measurement in the Relationship Between Satisfaction with Specific Life Domains and Satisfaction with Life as a Whole," Journal of Happiness Studies, Springer, vol. 11(3), pages 335-352, June.
    10. Vaida, Florin & Fitzgerald, Anthony P. & DeGruttola, Victor, 2007. "Efficient hybrid EM for linear and nonlinear mixed effects models with censored response," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5718-5730, August.
    11. Chiara Masci & Francesca Ieva & Tommaso Agasisti & Anna Maria Paganoni, 2021. "Evaluating class and school effects on the joint student achievements in different subjects: a bivariate semiparametric model with random coefficients," Computational Statistics, Springer, vol. 36(4), pages 2337-2377, December.
    12. Larissa A. Matos & Luis M. Castro & Víctor H. Lachos, 2016. "Censored mixed-effects models for irregularly observed repeated measures with applications to HIV viral loads," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 627-653, December.
    13. Marco Guerra & Francesca Bassi & José G. Dias, 2020. "A Multiple-Indicator Latent Growth Mixture Model to Track Courses with Low-Quality Teaching," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 361-381, January.
    14. Wendelin Schnedler & Nina Lucia Stephan, 2020. "Revisiting a Remedy Against Chains of Unkindness," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 72(3), pages 347-364, July.
    15. Calcagno, R. & Renneboog, L.D.R., 2004. "Capital Structure and Managerial Compensation : The Effects of Renumeration Seniority," Discussion Paper 2004-120, Tilburg University, Center for Economic Research.
    16. Marina Rybalka, 2015. "The innovative input mix. Assessing the importance of R&D and ICT investments for firm performance in manufacturing and services," Discussion Papers 801, Statistics Norway, Research Department.
    17. T.R.L. Fry & R.D. Brooks & Br. Comley & J. Zhang, 1993. "Economic Motivations for Limited Dependent and Qualitative Variable Models," The Economic Record, The Economic Society of Australia, vol. 69(2), pages 193-205, June.
    18. Alfred Michael Dockery & Mark N. Harris & Nicholas Holyoak & Ranjodh B. Singh, 2021. "A methodology for projecting sparse populations and its application to remote Indigenous communities," Journal of Geographical Systems, Springer, vol. 23(1), pages 37-61, January.
    19. Simplice A. Asongu & Mushfiqur Rahman & Mohammad Alghababsheh, 2022. "Information Technology, Business Sustainability and Female Economic Participation in Sub-Saharan Africa," Working Papers 22/057, European Xtramile Centre of African Studies (EXCAS).
    20. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:7:p:1174-1185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.