IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i7p2453-2464.html
   My bibliography  Save this article

Boosting nonlinear additive autoregressive time series

Author

Listed:
  • Shafik, Nivien
  • Tutz, Gerhard

Abstract

Several methods for the analysis of nonlinear time series models have been proposed. As in linear autoregressive models the main problems are model identification, estimation and prediction. A boosting method is proposed that performs model identification and estimation simultaneously within the framework of nonlinear autoregressive time series. The method allows one to select influential terms from a large number of potential lags and exogenous variables. The influence of the selected terms is modeled by an expansion in basis function allowing for a flexible additive form of the predictor. The approach is very competitive in particular in high dimensional settings where alternative fitting methods fail. This is demonstrated by means of simulations and two applications to real world data.

Suggested Citation

  • Shafik, Nivien & Tutz, Gerhard, 2009. "Boosting nonlinear additive autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2453-2464, May.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:7:p:2453-2464
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00571-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Young, Peter C. & Pedregal, Diego J., 1999. "Macro-economic relativity: government spending, private investment and unemployment in the USA 1948-1998," Structural Change and Economic Dynamics, Elsevier, vol. 10(3-4), pages 359-380, December.
    2. Buhlmann P. & Yu B., 2003. "Boosting With the L2 Loss: Regression and Classification," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 324-339, January.
    3. Jianhua Z. Huang & Haipeng Shen, 2004. "Functional Coefficient Regression Models for Non‐linear Time Series: A Polynomial Spline Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(4), pages 515-534, December.
    4. Hofmann, Marc & Gatu, Cristian & Kontoghiorghes, Erricos John, 2007. "Efficient algorithms for computing the best subset regression models for large-scale problems," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 16-29, September.
    5. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Lag Selection for Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(4), pages 457-487, July.
    6. Gatu, Cristian & Kontoghiorghes, Erricos J. & Gilli, Manfred & Winker, Peter, 2008. "An efficient branch-and-bound strategy for subset vector autoregressive model selection," Journal of Economic Dynamics and Control, Elsevier, vol. 32(6), pages 1949-1963, June.
    7. Gerhard Tutz & Harald Binder, 2006. "Generalized Additive Modeling with Implicit Variable Selection by Likelihood-Based Boosting," Biometrics, The International Biometric Society, vol. 62(4), pages 961-971, December.
    8. De Gooijer, Jan G. & Ray, Bonnie K., 2003. "Modeling vector nonlinear time series using POLYMARS," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 73-90, February.
    9. Jianhua Z. Huang & Lijian Yang, 2004. "Identification of non‐linear additive autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 463-477, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klaus Wohlrabe & Teresa Buchen, 2014. "Assessing the Macroeconomic Forecasting Performance of Boosting: Evidence for the United States, the Euro Area and Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 231-242, July.
    2. Buchen, Teresa & Wohlrabe, Klaus, 2011. "Forecasting with many predictors: Is boosting a viable alternative?," Economics Letters, Elsevier, vol. 113(1), pages 16-18, October.
    3. Souhaib Ben Taieb & Rob J Hyndman, 2014. "Boosting multi-step autoregressive forecasts," Monash Econometrics and Business Statistics Working Papers 13/14, Monash University, Department of Econometrics and Business Statistics.
    4. Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 99-122, January.
    5. Christmann, Andreas & Hable, Robert, 2012. "Consistency of support vector machines using additive kernels for additive models," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 854-873.
    6. Goessling, Marc, 2017. "LogitBoost autoregressive networks," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 88-98.
    7. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao Yang & Lan Xue & Lijian Yang, 2016. "Variable selection for additive model via cumulative ratios of empirical strengths total," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 595-616, September.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    4. Stefanie Hieke & Axel Benner & Richard F Schlenk & Martin Schumacher & Lars Bullinger & Harald Binder, 2016. "Identifying Prognostic SNPs in Clinical Cohorts: Complementing Univariate Analyses by Resampling and Multivariable Modeling," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-18, May.
    5. Chen, Xiaohong & Christensen, Timothy M., 2015. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," Journal of Econometrics, Elsevier, vol. 188(2), pages 447-465.
    6. Faisal Zahid & Gerhard Tutz, 2013. "Multinomial logit models with implicit variable selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 393-416, December.
    7. Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 99-122, January.
    8. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    9. Leitenstorfer, Florian & Tutz, Gerhard, 2007. "Knot selection by boosting techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4605-4621, May.
    10. Xiaohong Chen & Timothy M. Christensen, 2014. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," CeMMAP working papers 46/14, Institute for Fiscal Studies.
    11. Sariyar Murat & Schumacher Martin & Binder Harald, 2014. "A boosting approach for adapting the sparsity of risk prediction signatures based on different molecular levels," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(3), pages 1-15, June.
    12. Schmid, Matthias & Hothorn, Torsten, 2008. "Boosting additive models using component-wise P-Splines," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 298-311, December.
    13. Gatu, Cristian & Yanev, Petko I. & Kontoghiorghes, Erricos J., 2007. "A graph approach to generate all possible regression submodels," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 799-815, October.
    14. Fossati, Sebastian, 2012. "Covariate unit root tests with good size and power," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3070-3079.
    15. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    16. Yehua Li & Marc G. Genton, 2009. "Single‐Index Additive Vector Autoregressive Time Series Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 369-388, September.
    17. Tutz, Gerhard & Binder, Harald, 2007. "Boosting ridge regression," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6044-6059, August.
    18. Huang, Lei & Jiang, Hui & Wang, Huixia, 2019. "A novel partial-linear single-index model for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 110-122.
    19. Li, Rui & Wan, Alan T.K. & You, Jinhong, 2016. "Semiparametric GMM estimation and variable selection in dynamic panel data models with fixed effects," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 401-423.
    20. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:7:p:2453-2464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.