IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v132y2019icp3-17.html
   My bibliography  Save this article

A new test for functional one-way ANOVA with applications to ischemic heart screening

Author

Listed:
  • Zhang, Jin-Ting
  • Cheng, Ming-Yen
  • Wu, Hau-Tieng
  • Zhou, Bu

Abstract

Motivated by an ischemic heart screening problem, a new global test for one-way ANOVA in functional data analysis is studied. The test statistic is taken as the maximum of the pointwise F-test statistic over the interval the functional responses are observed. Nonparametric bootstrap, which is applicable in more general situations and easier to implement than parametric bootstrap, is employed to approximate the null distribution and to obtain an approximate critical value. Under mild conditions, asymptotically our test has the correct level and is root-n consistent in detecting local alternatives. Simulation studies show that the proposed test outperforms several existing tests in terms of both size control and power when the correlation between observations at any two different points is high or moderate, and it is comparable with the competitors otherwise. Application to an ischemic heart dataset suggests that resting electrocardiogram signals may contain enough information for ischemic heart screening at outpatient clinics, without the help of stress tests required by the current standard procedure.

Suggested Citation

  • Zhang, Jin-Ting & Cheng, Ming-Yen & Wu, Hau-Tieng & Zhou, Bu, 2019. "A new test for functional one-way ANOVA with applications to ischemic heart screening," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 3-17.
  • Handle: RePEc:eee:csdana:v:132:y:2019:i:c:p:3-17
    DOI: 10.1016/j.csda.2018.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318301130
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alonso, Andrés M. & Casado, David & Romo, Juan, 2012. "Supervised classification for functional data: A weighted distance approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2334-2346.
    2. Stefan Fremdt & Josef G. Steinebach & Lajos Horváth & Piotr Kokoszka, 2013. "Testing the Equality of Covariance Operators in Functional Samples," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 138-152, March.
    3. Dennis D. Cox & Jong Soo Lee, 2008. "Pointwise testing with functional data using the Westfall--Young randomization method," Biometrika, Biometrika Trust, vol. 95(3), pages 621-634.
    4. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2004. "An anova test for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 111-122, August.
    5. Slaets, Leen & Claeskens, Gerda & Hubert, Mia, 2012. "Phase and amplitude-based clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2360-2374.
    6. Tomasz Górecki & Łukasz Smaga, 2015. "A comparison of tests for the one-way ANOVA problem for functional data," Computational Statistics, Springer, vol. 30(4), pages 987-1010, December.
    7. E. Paparoditis & T. Sapatinas, 2016. "Bootstrap-based testing of equality of mean functions or equality of covariance operators for functional data," Biometrika, Biometrika Trust, vol. 103(3), pages 727-733.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    2. Jing Zhao & Sanying Feng & Yuping Hu, 2022. "Two-Sample Hypothesis Test for Functional Data," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
    3. Hlávka, Zdeněk & Hlubinka, Daniel & Koňasová, Kateřina, 2022. "Functional ANOVA based on empirical characteristic functionals," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Huang, Wei-Hsueh & Huang, Li-Shan & Yang, Cheng-Tao, 2022. "Invariant tests for functional data with application to an earthquake impact study," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Jiménez-Gamero, M. Dolores & Franco-Pereira, Alba M., 2021. "Testing the equality of a large number of means of functional data," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    6. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    7. Łukasz Smaga & Jin‐Ting Zhang, 2020. "Linear hypothesis testing for weighted functional data with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 493-515, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Guo & Bu Zhou & Jianwei Chen & Jin-Ting Zhang, 2019. "An $${{\varvec{L}}}^{2}$$L2-norm-based test for equality of several covariance functions: a further study," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1092-1112, December.
    2. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    3. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    4. Dimitrios Pilavakis & Efstathios Paparoditis & Theofanis Sapatinas, 2020. "Testing equality of autocovariance operators for functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 571-589, July.
    5. Hlávka, Zdeněk & Hlubinka, Daniel & Koňasová, Kateřina, 2022. "Functional ANOVA based on empirical characteristic functionals," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Guo, Jia & Zhou, Bu & Zhang, Jin-Ting, 2018. "Testing the equality of several covariance functions for functional data: A supremum-norm based test," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 15-26.
    7. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    8. Flores Díaz, Ramón Jesús & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2014. "Homogeneity test for functional data based on depth measures," DES - Working Papers. Statistics and Econometrics. WS ws140101, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    10. Holger Dette & Kevin Kokot & Stanislav Volgushev, 2020. "Testing relevant hypotheses in functional time series via self‐normalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 629-660, July.
    11. T. Górecki & Ł. Smaga, 2017. "Multivariate analysis of variance for functional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2172-2189, September.
    12. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    13. Alexander S. Long & Brian J. Reich & Ana‐Maria Staicu & John Meitzen, 2023. "A nonparametric test of group distributional differences for hierarchically clustered functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3778-3791, December.
    14. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    15. Jonatan A. González & Bernardo M. Lagos-Álvarez & Jorge Mateu, 2021. "Two-way layout factorial experiments of spatial point pattern responses in mineral flotation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 1046-1075, December.
    16. Łukasz Smaga, 2020. "A note on repeated measures analysis for functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 117-139, March.
    17. Jiménez-Gamero, M. Dolores & Franco-Pereira, Alba M., 2021. "Testing the equality of a large number of means of functional data," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    18. Vsevolozhskaya, O.A. & Greenwood, M.C. & Bellante, G.J. & Powell, S.L. & Lawrence, R.L. & Repasky, K.S., 2013. "Combining functions and the closure principle for performing follow-up tests in functional analysis of variance," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 175-184.
    19. Christian Acal & Ana M. Aguilera, 2023. "Basis expansion approaches for functional analysis of variance with repeated measures," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 291-321, June.
    20. Graciela Boente & Daniela Rodriguez & Mariela Sued, 2018. "Testing equality between several populations covariance operators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 919-950, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:132:y:2019:i:c:p:3-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.