IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i12p2172-2189.html
   My bibliography  Save this article

Multivariate analysis of variance for functional data

Author

Listed:
  • T. Górecki
  • Ł. Smaga

Abstract

Functional data are being observed frequently in many scientific fields, and therefore most of the standard statistical methods are being adapted for functional data. The multivariate analysis of variance problem for functional data is considered. It seems to be of practical interest similarly as the one-way analysis of variance for such data. For the MANOVA problem for multivariate functional data, we propose permutation tests based on a basis function representation and tests based on random projections. Their performance is examined in comprehensive simulation studies, which provide an idea of the size control and power of the tests and identify differences between them. The simulation experiments are based on artificial data and real labeled multivariate time series data found in the literature. The results suggest that the studied testing procedures can detect small differences between vectors of curves even with small sample sizes. Illustrative real data examples of the use of the proposed testing procedures in practice are also presented.

Suggested Citation

  • T. Górecki & Ł. Smaga, 2017. "Multivariate analysis of variance for functional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2172-2189, September.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:12:p:2172-2189
    DOI: 10.1080/02664763.2016.1247791
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1247791
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1247791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    2. K. Benhenni & F. Ferraty & M. Rachdi & P. Vieu, 2007. "Local smoothing regression with functional data," Computational Statistics, Springer, vol. 22(3), pages 353-369, September.
    3. Gregorutti, Baptiste & Michel, Bertrand & Saint-Pierre, Philippe, 2015. "Grouped variable importance with random forests and application to multiple functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 15-35.
    4. Cuesta-Albertos, J.A. & del Barrio, E. & Fraiman, R. & Matran, C., 2007. "The random projection method in goodness of fit for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4814-4831, June.
    5. Martínez-Camblor, Pablo & Corral, Norberto, 2011. "Repeated measures analysis for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3244-3256, December.
    6. Berrendero, J.R. & Justel, A. & Svarc, M., 2011. "Principal components for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2619-2634, September.
    7. Boente, Graciela & Salibián Barrera, Matías & Tyler, David E., 2014. "A characterization of elliptical distributions and some optimality properties of principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 254-264.
    8. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    9. Schott, James R., 2007. "Some high-dimensional tests for a one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1825-1839, October.
    10. Tomasz Górecki & Łukasz Smaga, 2015. "A comparison of tests for the one-way ANOVA problem for functional data," Computational Statistics, Springer, vol. 30(4), pages 987-1010, December.
    11. Jaromir Antoch & Lubos Prchal & Maria Rosaria De Rosa & Pascal Sarda, 2010. "Electricity consumption prediction with functional linear regression using spline estimators," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(12), pages 2027-2041.
    12. Horváth, Lajos & Kokoszka, Piotr & Steinebach, Josef, 2007. "On sequential detection of parameter changes in linear regression," Statistics & Probability Letters, Elsevier, vol. 77(9), pages 885-895, May.
    13. Mengmeng Guo & Lhan Zhou & Jianhua Z. Huang & Wolfgang Karl Härdle, 2013. "Functional Data Analysis of Generalized Quantile Regressions," SFB 649 Discussion Papers SFB649DP2013-001, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    14. Shuichi Tokushige & Hiroshi Yadohisa & Koichi Inada, 2007. "Crisp and fuzzy k-means clustering algorithms for multivariate functional data," Computational Statistics, Springer, vol. 22(1), pages 1-16, April.
    15. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    16. Istem Koymen Keser & Ipek Deveci Kocako�, 2015. "Smoothed functional canonical correlation analysis of humidity and temperature data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2126-2140, October.
    17. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2004. "An anova test for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 111-122, August.
    18. Fremdt, Stefan & Horváth, Lajos & Kokoszka, Piotr & Steinebach, Josef G., 2014. "Functional data analysis with increasing number of projections," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 313-332.
    19. J. Cuesta-Albertos & M. Febrero-Bande, 2010. "A simple multiway ANOVA for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 537-557, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirosław Krzyśko & Łukasz Smaga, 2017. "An Application Of Functional Multivariate Regression Model To Multiclass Classification," Statistics in Transition New Series, Polish Statistical Association, vol. 18(3), pages 433-442, September.
    2. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    3. Łukasz Smaga, 2020. "A note on repeated measures analysis for functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 117-139, March.
    4. Zhuo Qu & Wenlin Dai & Marc G. Genton, 2021. "Robust functional multivariate analysis of variance with environmental applications," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    2. Christian Acal & Ana M. Aguilera, 2023. "Basis expansion approaches for functional analysis of variance with repeated measures," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 291-321, June.
    3. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    4. Tomasz Górecki & Łukasz Smaga, 2015. "A comparison of tests for the one-way ANOVA problem for functional data," Computational Statistics, Springer, vol. 30(4), pages 987-1010, December.
    5. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    6. A. Debòn & S. Haberman & F. Montes & E. Otranto, 2012. "Model effect on projected mortality indicators," Working Paper CRENoS 201215, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    7. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    8. Virta, Joni & Li, Bing & Nordhausen, Klaus & Oja, Hannu, 2020. "Independent component analysis for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    9. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    10. Jia Guo & Bu Zhou & Jianwei Chen & Jin-Ting Zhang, 2019. "An $${{\varvec{L}}}^{2}$$L2-norm-based test for equality of several covariance functions: a further study," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1092-1112, December.
    11. Łukasz Smaga, 2020. "A note on repeated measures analysis for functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 117-139, March.
    12. Jiménez-Gamero, M. Dolores & Franco-Pereira, Alba M., 2021. "Testing the equality of a large number of means of functional data," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    13. Martínez-Camblor, Pablo & Corral, Norberto, 2011. "Repeated measures analysis for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3244-3256, December.
    14. Hlávka, Zdeněk & Hlubinka, Daniel & Koňasová, Kateřina, 2022. "Functional ANOVA based on empirical characteristic functionals," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    15. Tomasz Górecki & Łukasz Smaga, 2019. "fdANOVA: an R software package for analysis of variance for univariate and multivariate functional data," Computational Statistics, Springer, vol. 34(2), pages 571-597, June.
    16. Zhu, Tianming & Zhang, Jin-Ting & Cheng, Ming-Yen, 2022. "One-way MANOVA for functional data via Lawley–Hotelling trace test," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    17. Rafael Meléndez & Ramón Giraldo & Víctor Leiva, 2020. "Sign, Wilcoxon and Mann-Whitney Tests for Functional Data: An Approach Based on Random Projections," Mathematics, MDPI, vol. 9(1), pages 1-11, December.
    18. Pini, Alessia & Sørensen, Helle & Tolver, Anders & Vantini, Simone, 2023. "Local inference for functional linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    19. Mirosław Krzyśko & Łukasz Smaga, 2017. "An Application Of Functional Multivariate Regression Model To Multiclass Classification," Statistics in Transition New Series, Polish Statistical Association, vol. 18(3), pages 433-442, September.
    20. Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:12:p:2172-2189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.