IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v124y2018icp15-26.html
   My bibliography  Save this article

Testing the equality of several covariance functions for functional data: A supremum-norm based test

Author

Listed:
  • Guo, Jia
  • Zhou, Bu
  • Zhang, Jin-Ting

Abstract

Testing the equality of covariance functions is crucial for solving functional ANOVA problems. Available methods, such as the recently proposed L2-norm based tests work well when functional data are less correlated but are less powerful when functional data are highly correlated or with some local spikes, which are often the cases in real functional data analysis. To overcome this difficulty, a new test for the equality of several covariance functions is proposed. Its test statistic is taken as the supremum value of the sum of the squared differences between the estimated individual covariance functions and the pooled sample covariance function. The asymptotic random expressions of the test statistic under the null hypothesis and under a local alternative are derived and a non-parametric bootstrap method is suggested. The root-n consistency of the proposed test is also obtained. Intensive simulation studies are conducted to demonstrate the finite sample performance of the proposed test. The simulation results show that the proposed test is indeed more powerful than several existing L2-norm based competitors when functional data are highly correlated or with some local spikes. The proposed test is illustrated with three real data examples collected in a wide scope of scientific fields.

Suggested Citation

  • Guo, Jia & Zhou, Bu & Zhang, Jin-Ting, 2018. "Testing the equality of several covariance functions for functional data: A supremum-norm based test," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 15-26.
  • Handle: RePEc:eee:csdana:v:124:y:2018:i:c:p:15-26
    DOI: 10.1016/j.csda.2018.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318300392
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eddelbuettel, Dirk & Sanderson, Conrad, 2014. "RcppArmadillo: Accelerating R with high-performance C++ linear algebra," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1054-1063.
    2. Newey, Whitney K, 1991. "Uniform Convergence in Probability and Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 59(4), pages 1161-1167, July.
    3. Stefan Fremdt & Josef G. Steinebach & Lajos Horváth & Piotr Kokoszka, 2013. "Testing the Equality of Covariance Operators in Functional Samples," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 138-152, March.
    4. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167.
    5. Panaretos, Victor M. & Kraus, David & Maddocks, John H., 2010. "Second-Order Comparison of Gaussian Random Functions and the Geometry of DNA Minicircles," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 670-682.
    6. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2004. "An anova test for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 111-122, August.
    7. E. Paparoditis & T. Sapatinas, 2016. "Bootstrap-based testing of equality of mean functions or equality of covariance operators for functional data," Biometrika, Biometrika Trust, vol. 103(3), pages 727-733.
    8. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506.
    9. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    2. Holger Dette & Kevin Kokot, 2022. "Detecting relevant differences in the covariance operators of functional time series: a sup-norm approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 195-231, April.
    3. Wang, Jiangyan & Cao, Guanqun & Wang, Li & Yang, Lijian, 2020. "Simultaneous confidence band for stationary covariance function of dense functional data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    4. Telschow, Fabian J.E. & Davenport, Samuel & Schwartzman, Armin, 2022. "Functional delta residuals and applications to simultaneous confidence bands of moment based statistics," Journal of Multivariate Analysis, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    2. Jia Guo & Bu Zhou & Jianwei Chen & Jin-Ting Zhang, 2019. "An $${{\varvec{L}}}^{2}$$L2-norm-based test for equality of several covariance functions: a further study," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1092-1112, December.
    3. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    4. Dimitrios Pilavakis & Efstathios Paparoditis & Theofanis Sapatinas, 2020. "Testing equality of autocovariance operators for functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 571-589, July.
    5. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    6. Timothy K.M. Beatty & Erling Røed Larsen, 2005. "Using Engel curves to estimate bias in the Canadian CPI as a cost of living index," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(2), pages 482-499, May.
    7. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    8. Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    9. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
    10. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    11. Bernhard Baumgartner & Daniel Guhl & Thomas Kneib & Winfried J. Steiner, 2018. "Flexible estimation of time-varying effects for frequently purchased retail goods: a modeling approach based on household panel data," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 837-873, October.
    12. Zi Ye & Giles Hooker & Stephen P. Ellner, 2021. "Generalized Single Index Models and Jensen Effects on Reproduction and Survival," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 492-512, September.
    13. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. Alexander Dokumentov & Rob J. Hyndman, 2022. "STR: Seasonal-Trend Decomposition Using Regression," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 50-62, April.
    15. Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    16. Krisztin, Tamás, 2018. "Semi-parametric spatial autoregressive models in freight generation modeling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 121-143.
    17. Jin-Ting Zhang & Xuehua Liang, 2014. "One-Way anova for Functional Data via Globalizing the Pointwise F-test," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 51-71, March.
    18. Lauren N. Berry & Nathaniel E. Helwig, 2021. "Cross-Validation, Information Theory, or Maximum Likelihood? A Comparison of Tuning Methods for Penalized Splines," Stats, MDPI, vol. 4(3), pages 1-24, September.
    19. Nagler Thomas & Czado Claudia & Schellhase Christian, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    20. Yukun Zhang & Haocheng Li & Sarah Kozey Keadle & Charles E. Matthews & Raymond J. Carroll, 2019. "A Review of Statistical Analyses on Physical Activity Data Collected from Accelerometers," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 465-476, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:124:y:2018:i:c:p:15-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.