IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v142y2021ics0960077920308651.html
   My bibliography  Save this article

Generalized entropy plane based on multiscale weighted multivariate dispersion entropy for financial time series

Author

Listed:
  • Wang, Zhuo
  • Shang, Pengjian

Abstract

In recent years, complexity-entropy causality plane, Shannon-Fisher information plane and Renyi-Tsalli entropy plane methods have been proposed to study one-dimensional nonlinear complex systems and widely applied in many fields. However, it is much less common for these definitions to extend to two-dimensional or higher-dimensional data. Dispersion entropy shows superior performance in complex system analysis. We propose the above three generalized entropy plane methods based on multivariate dispersion entropy (MDE) and weighted multivariate dispersion entropy (WMDE) to evaluate the complexity of two-dimensional data. The performance of these methods is compared by analyzing the simulated data. Applying these methods to the study of multivariate stock time series, the complexity-entropy causality plane shows more great performance, not only obtains the classification of the stock market indices, but distinguishes the development states of different stock market indices. At the same time, we also propose multiscale multivariate dispersion entropy (MMDE) and multiscale weighted multivariate dispersion entropy (MWMDE), and reveal the ordinal structure of stock market indices from the view of multiscale.

Suggested Citation

  • Wang, Zhuo & Shang, Pengjian, 2021. "Generalized entropy plane based on multiscale weighted multivariate dispersion entropy for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308651
    DOI: 10.1016/j.chaos.2020.110473
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920308651
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lima, L.S. & Oliveira, S.C., 2020. "Two-dimensional stochastic dynamics as model for time evolution of the financial market," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    2. J. Doyne Farmer, 2000. "Physicists Attempt To Scale The Ivory Towers Of Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 311-333.
    3. Bentes, Sónia R. & Menezes, Rui & Mendes, Diana A., 2008. "Long memory and volatility clustering: Is the empirical evidence consistent across stock markets?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3826-3830.
    4. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871.
    5. Cao, Guangxi & Zhang, Qi & Li, Qingchen, 2017. "Causal relationship between the global foreign exchange market based on complex networks and entropy theory," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 36-44.
    6. Zunino, Luciano & Ribeiro, Haroldo V., 2016. "Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 679-688.
    7. Constantino Tsallis & Celia Anteneodo & Lisa Borland & Roberto Osorio, 2003. "Nonextensive statistical mechanics and economics," Papers cond-mat/0301307, arXiv.org.
    8. Martín Gómez Ravetti & Laura C Carpi & Bruna Amin Gonçalves & Alejandro C Frery & Osvaldo A Rosso, 2014. "Distinguishing Noise from Chaos: Objective versus Subjective Criteria Using Horizontal Visibility Graph," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-15, September.
    9. Cajueiro, Daniel O. & Tabak, Benjamin M., 2008. "Testing for time-varying long-range dependence in real state equity returns," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 293-307.
    10. Lahmiri, Salim & Bekiros, Stelios, 2018. "Time-varying self-similarity in alternative investments," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 1-5.
    11. Martin, M.T. & Plastino, A. & Rosso, O.A., 2006. "Generalized statistical complexity measures: Geometrical and analytical properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 439-462.
    12. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    13. Darbellay, Georges A & Wuertz, Diethelm, 2000. "The entropy as a tool for analysing statistical dependences in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 429-439.
    14. Haroldo V Ribeiro & Luciano Zunino & Ervin K Lenzi & Perseu A Santoro & Renio S Mendes, 2012. "Complexity-Entropy Causality Plane as a Complexity Measure for Two-Dimensional Patterns," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-9, August.
    15. Ausloos, M., 2000. "Statistical physics in foreign exchange currency and stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 48-65.
    16. Golan, Amos, 2002. "Information and Entropy Econometrics--Editor's View," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 1-15, March.
    17. Dai, Yimei & He, Jiayi & Wu, Yue & Chen, Shijian & Shang, Pengjian, 2019. "Generalized entropy plane based on permutation entropy and distribution entropy analysis for complex time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 217-231.
    18. Lamberti, P.W & Martin, M.T & Plastino, A & Rosso, O.A, 2004. "Intensive entropic non-triviality measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 334(1), pages 119-131.
    19. Jizba, Petr & Arimitsu, Toshihico, 2004. "Generalized statistics: yet another generalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 110-116.
    20. Tsallis, Constantino & Anteneodo, Celia & Borland, Lisa & Osorio, Roberto, 2003. "Nonextensive statistical mechanics and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 89-100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yuxing & Wu, Junxian & Yi, Yingmin & Gu, Yunpeng, 2023. "Unequal-step multiscale integrated mapping dispersion Lempel-Ziv complexity: A novel complexity metric for signal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Boyi & Shang, Pengjian & Zhou, Qin, 2021. "The identification of fractional order systems by multiscale multivariate analysis," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Fernandes, Leonardo H.S. & de Araujo, Fernando H.A. & Tabak, Benjamin M., 2021. "Insights from the (in)efficiency of Chinese sectoral indices during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    3. Qin, Guyue & Shang, Pengjian, 2021. "Analysis of time series using a new entropy plane based on past entropy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Zunino, Luciano & Fernández Bariviera, Aurelio & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2012. "On the efficiency of sovereign bond markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4342-4349.
    5. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    6. Jauregui, M. & Zunino, L. & Lenzi, E.K. & Mendes, R.S. & Ribeiro, H.V., 2018. "Characterization of time series via Rényi complexity–entropy curves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 74-85.
    7. Zunino, Luciano & Tabak, Benjamin M. & Serinaldi, Francesco & Zanin, Massimiliano & Pérez, Darío G. & Rosso, Osvaldo A., 2011. "Commodity predictability analysis with a permutation information theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 876-890.
    8. Zunino, Luciano & Ribeiro, Haroldo V., 2016. "Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 679-688.
    9. Bariviera, Aurelio F. & Font-Ferrer, Alejandro & Sorrosal-Forradellas, M. Teresa & Rosso, Osvaldo A., 2019. "An information theory perspective on the informational efficiency of gold price," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    10. Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M. & Neto, Jusie S.P., 2021. "Macroeconophysics indicator of economic efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    11. Aurelio Fernandez Bariviera & María Belén Guercio & Lisana B. Martinez & Osvaldo A. Rosso, 2015. "The (in)visible hand in the Libor market: an information theory approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(8), pages 1-9, August.
    12. Trindade, Marco A.S. & Floquet, Sergio & Filho, Lourival M. Silva, 2020. "Portfolio theory, information theory and Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    13. Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Libor at crossroads: Stochastic switching detection using information theory quantifiers," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 172-182.
    14. Potirakis, Stelios M. & Zitis, Pavlos I. & Eftaxias, Konstantinos, 2013. "Dynamical analogy between economical crisis and earthquake dynamics within the nonextensive statistical mechanics framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2940-2954.
    15. Marco A. S. Trindade & Sergio Floquet & Lourival M. S. Filho, 2018. "Portfolio Theory, Information Theory and Tsallis Statistics," Papers 1811.07237, arXiv.org, revised Oct 2019.
    16. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Exploring disorder and complexity in the cryptocurrency space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 548-556.
    17. Agliari, Anna & Naimzada, Ahmad & Pecora, Nicolò, 2017. "Dynamic effects of memory in a cobweb model with competing technologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 340-350.
    18. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
    19. Liu, Zhengli & Shang, Pengjian & Wang, Yuanyuan, 2020. "Characterization of time series through information quantifiers," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    20. Rosso, Osvaldo A. & Carpi, Laura C. & Saco, Patricia M. & Gómez Ravetti, Martín & Plastino, Angelo & Larrondo, Hilda A., 2012. "Causality and the entropy–complexity plane: Robustness and missing ordinal patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 42-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.