IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v287y2000i3p429-439.html
   My bibliography  Save this article

The entropy as a tool for analysing statistical dependences in financial time series

Author

Listed:
  • Darbellay, Georges A
  • Wuertz, Diethelm

Abstract

The entropy is a concept which may serve to define quantities such as the conditional entropy and the mutual information. Using a novel algorithm for the estimation of the mutual information from data, we analyse several financial time series and demonstrate the usefulness of this new approach. The issues of long-range dependence and non-stationarity are discussed.

Suggested Citation

  • Darbellay, Georges A & Wuertz, Diethelm, 2000. "The entropy as a tool for analysing statistical dependences in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 429-439.
  • Handle: RePEc:eee:phsmap:v:287:y:2000:i:3:p:429-439
    DOI: 10.1016/S0378-4371(00)00382-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437100003824
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(00)00382-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Doyne Farmer, 2000. "Physicists Attempt To Scale The Ivory Towers Of Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 311-333.
    2. Yanhui Liu & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1997. "Correlations in Economic Time Series," Papers cond-mat/9706021, arXiv.org.
    3. Darbellay, Georges A., 1999. "An estimator of the mutual information based on a criterion for conditional independence," Computational Statistics & Data Analysis, Elsevier, vol. 32(1), pages 1-17, November.
    4. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
    5. Galluccio, S. & Caldarelli, G. & Marsili, M. & Zhang, Y.-C., 1997. "Scaling in currency exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 423-436.
    6. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    7. Liu, Yanhui & Cizeau, Pierre & Meyer, Martin & Peng, C.-K. & Eugene Stanley, H., 1997. "Correlations in economic time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 437-440.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danilo Delpini & Giacomo Bormetti, 2012. "Stochastic Volatility with Heterogeneous Time Scales," Papers 1206.0026, arXiv.org, revised Apr 2013.
    2. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    3. D. Delpini & G. Bormetti, 2015. "Stochastic volatility with heterogeneous time scales," Quantitative Finance, Taylor & Francis Journals, vol. 15(10), pages 1597-1608, October.
    4. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    5. Seemann, Lars & Hua, Jia-Chen & McCauley, Joseph L. & Gunaratne, Gemunu H., 2012. "Ensemble vs. time averages in financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6024-6032.
    6. Gilles Zumbach, 2011. "Characterizing heteroskedasticity," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1357-1369, October.
    7. S. M. Duarte Queiros, 2005. "On non-Gaussianity and dependence in financial time series: a nonextensive approach," Quantitative Finance, Taylor & Francis Journals, vol. 5(5), pages 475-487.
    8. Thilo A. Schmitt & Rudi Schafer & Holger Dette & Thomas Guhr, 2015. "Quantile Correlations: Uncovering temporal dependencies in financial time series," Papers 1507.04990, arXiv.org.
    9. Lisa Borland & Jean-Philippe Bouchaud & Jean-Francois Muzy & Gilles Zumbach, 2005. "The Dynamics of Financial Markets -- Mandelbrot's multifractal cascades, and beyond," Science & Finance (CFM) working paper archive 500061, Science & Finance, Capital Fund Management.
    10. Michele Caraglio & Fulvio Baldovin & Attilio L. Stella, 2021. "How Fast Does the Clock of Finance Run?—A Time-Definition Enforcing Stationarity and Quantifying Overnight Duration," JRFM, MDPI, vol. 14(8), pages 1-15, August.
    11. Nunes Amaral, Luís A & Buldyrev, Sergey V & Havlin, Shlomo & Maass, Philipp & Salinger, Michael A & Eugene Stanley, H & Stanley, Michael H.R, 1997. "Scaling behavior in economics: The problem of quantifying company growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 244(1), pages 1-24.
    12. Weron, Rafal & Weron, Karina & Weron, Aleksander, 1999. "A conditionally exponential decay approach to scaling in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 264(3), pages 551-561.
    13. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.
    14. Matassini, Lorenzo & Franci, Fabio, 2001. "On financial markets trading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 526-542.
    15. Yang, Honglin & Wan, Hong & Zha, Yong, 2013. "Autocorrelation type, timescale and statistical property in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1681-1693.
    16. Matthieu Wyart & Jean-Philippe Bouchaud, 2003. "Self-referential behaviour, overreaction and conventions in financial markets," Science & Finance (CFM) working paper archive 500020, Science & Finance, Capital Fund Management.
    17. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    18. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Long memory volatility in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1425-1433.
    19. Wyart, Matthieu & Bouchaud, Jean-Philippe, 2007. "Self-referential behaviour, overreaction and conventions in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 63(1), pages 1-24, May.
    20. Paulo Ferreira, 2020. "Dynamic long-range dependences in the Swiss stock market," Empirical Economics, Springer, vol. 58(4), pages 1541-1573, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:287:y:2000:i:3:p:429-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.