IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v91y2012i1p51-58.html
   My bibliography  Save this article

Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers

Author

Listed:
  • Hermes, Christian J.L.
  • Barbosa, Jader R.

Abstract

The present study compares the thermodynamic performance of four small-capacity portable coolers that employ different cooling technologies: thermoelectric, Stirling, and vapor compression using two different compressors (reciprocating and linear). The refrigeration systems were experimentally evaluated in a climatized chamber with controlled temperature and humidity. Tests were carried out at two different ambient temperatures (21 and 32°C) in order to obtain key performance parameters of the systems (e.g., power consumption, cooling capacity, internal air temperature, and the hot end and cold end temperatures). These performance parameters were compared using a thermodynamic approach that splits the overall 2nd law efficiency into two terms, namely, the internal and external efficiencies. In doing so, the internal irreversibilities (e.g., friction in the working fluid in the Stirling and vapor compression machines, Joule heating and heat conduction in the thermoelectric devices of the Peltier cooler) were separated from the heat exchanger losses (external irreversibilities), allowing the comparison between different refrigeration technologies with respect to the same thermodynamic baseline.

Suggested Citation

  • Hermes, Christian J.L. & Barbosa, Jader R., 2012. "Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers," Applied Energy, Elsevier, vol. 91(1), pages 51-58.
  • Handle: RePEc:eee:appene:v:91:y:2012:i:1:p:51-58
    DOI: 10.1016/j.apenergy.2011.08.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911005538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.08.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min, Gao & Rowe, D.M., 2006. "Experimental evaluation of prototype thermoelectric domestic-refrigerators," Applied Energy, Elsevier, vol. 83(2), pages 133-152, February.
    2. Riffat, S.B. & Omer, S.A. & Ma, Xiaoli, 2001. "A novel thermoelectric refrigeration system employing heat pipes and a phase change material: an experimental investigation," Renewable Energy, Elsevier, vol. 23(2), pages 313-323.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afshari, Faraz & Mandev, Emre & Muratçobanoğlu, Burak & Yetim, Ali Fatih & Ceviz, Mehmet Akif, 2023. "Experimental and numerical study on a novel fanless air-to-air solar thermoelectric refrigerator equipped with boosted heat exchanger," Renewable Energy, Elsevier, vol. 207(C), pages 253-265.
    2. Kwan, Trevor Hocksun & Zhao, Bin & Liu, Jie & Pei, Gang, 2020. "Performance analysis of the sky radiative and thermoelectric hybrid cooling system," Energy, Elsevier, vol. 200(C).
    3. Diaz-Londono, Cesar & Enescu, Diana & Ruiz, Fredy & Mazza, Andrea, 2020. "Experimental modeling and aggregation strategy for thermoelectric refrigeration units as flexible loads," Applied Energy, Elsevier, vol. 272(C).
    4. Agnieszka Żelazna & Justyna Gołębiowska, 2020. "A PV-Powered TE Cooling System with Heat Recovery: Energy Balance and Environmental Impact Indicators," Energies, MDPI, vol. 13(7), pages 1-22, April.
    5. Mingzhang Pan & Huan Zhao & Dongwu Liang & Yan Zhu & Youcai Liang & Guangrui Bao, 2020. "A Review of the Cascade Refrigeration System," Energies, MDPI, vol. 13(9), pages 1-26, May.
    6. Al-Nimr, M.A. & Al-Darawsheh, I.A. & AL-Khalayleh, L.A., 2018. "A novel hybrid cavity solar thermal collector," Renewable Energy, Elsevier, vol. 115(C), pages 299-307.
    7. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    8. Soprani, S. & Haertel, J.H.K. & Lazarov, B.S. & Sigmund, O. & Engelbrecht, K., 2016. "A design approach for integrating thermoelectric devices using topology optimization," Applied Energy, Elsevier, vol. 176(C), pages 49-64.
    9. Zhao, Dongliang & Tan, Gang, 2014. "Experimental evaluation of a prototype thermoelectric system integrated with PCM (phase change material) for space cooling," Energy, Elsevier, vol. 68(C), pages 658-666.
    10. Irshad, Kashif & Habib, Khairul & Thirumalaiswamy, Nagarajan & Saha, Bidyut Baran, 2015. "Performance analysis of a thermoelectric air duct system for energy-efficient buildings," Energy, Elsevier, vol. 91(C), pages 1009-1017.
    11. Lozano, J.A. & Engelbrecht, K. & Bahl, C.R.H. & Nielsen, K.K. & Eriksen, D. & Olsen, U.L. & Barbosa, J.R. & Smith, A. & Prata, A.T. & Pryds, N., 2013. "Performance analysis of a rotary active magnetic refrigerator," Applied Energy, Elsevier, vol. 111(C), pages 669-680.
    12. Li, Xingping & Li, Ji & Zhou, Guohui & Lv, Lucang, 2020. "Quantitative analysis of passive seasonal cold storage with a two-phase closed thermosyphon," Applied Energy, Elsevier, vol. 260(C).
    13. Oliveira, Klaudio S.M. & Cardoso, Rodrigo P. & Hermes, Christian J.L., 2014. "Numerical assessment of the thermodynamic performance of thermoelectric cells via two-dimensional modelling," Applied Energy, Elsevier, vol. 130(C), pages 280-288.
    14. Hansol Lim & Seong-Yong Cheon & Jae-Weon Jeong, 2018. "Empirical Analysis for the Heat Exchange Effectiveness of a Thermoelectric Liquid Cooling and Heating Unit," Energies, MDPI, vol. 11(3), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    2. Diaz-Londono, Cesar & Enescu, Diana & Ruiz, Fredy & Mazza, Andrea, 2020. "Experimental modeling and aggregation strategy for thermoelectric refrigeration units as flexible loads," Applied Energy, Elsevier, vol. 272(C).
    3. Fisac, Miguel & Villasevil, Francesc X. & López, Antonio M., 2015. "Design of a thermoelectric generator with fast transient response," Renewable Energy, Elsevier, vol. 81(C), pages 658-663.
    4. Silva, D.J. & Ventura, J. & Araújo, J.P. & Pereira, A.M., 2014. "Maximizing the temperature span of a solid state active magnetic regenerative refrigerator," Applied Energy, Elsevier, vol. 113(C), pages 1149-1154.
    5. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    6. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    7. Owoyele, Opeoluwa & Ferguson, Scott & O’Connor, Brendan T., 2015. "Performance analysis of a thermoelectric cooler with a corrugated architecture," Applied Energy, Elsevier, vol. 147(C), pages 184-191.
    8. Afshari, Faraz & Mandev, Emre & Muratçobanoğlu, Burak & Yetim, Ali Fatih & Ceviz, Mehmet Akif, 2023. "Experimental and numerical study on a novel fanless air-to-air solar thermoelectric refrigerator equipped with boosted heat exchanger," Renewable Energy, Elsevier, vol. 207(C), pages 253-265.
    9. Siviter, J. & Montecucco, A. & Knox, A.R., 2015. "Rankine cycle efficiency gain using thermoelectric heat pumps," Applied Energy, Elsevier, vol. 140(C), pages 161-170.
    10. Gulfam, Raza & Zhang, Peng & Meng, Zhaonan, 2019. "Advanced thermal systems driven by paraffin-based phase change materials – A review," Applied Energy, Elsevier, vol. 238(C), pages 582-611.
    11. Oswaldo Hideo Ando Junior & Nelson H. Calderon & Samara Silva De Souza, 2018. "Characterization of a Thermoelectric Generator (TEG) System for Waste Heat Recovery," Energies, MDPI, vol. 11(6), pages 1-13, June.
    12. Rui Miao & Xiaoou Hu & Yao Yu & Qifeng Zhang & Zhibin Lin & Abdulaziz Banawi & Ahmed Cherif Megri, 2021. "Experimental Study to Analyze Feasibility of a Novel Panelized Ground-Source Thermoelectric System for Building Space Heating and Cooling," Energies, MDPI, vol. 15(1), pages 1-17, December.
    13. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    14. Martínez, A. & Astrain, D. & Rodríguez, A., 2011. "Experimental and analytical study on thermoelectric self cooling of devices," Energy, Elsevier, vol. 36(8), pages 5250-5260.
    15. Irshad, Kashif & Habib, Khairul & Basrawi, Firdaus & Saha, Bidyut Baran, 2017. "Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate," Energy, Elsevier, vol. 119(C), pages 504-522.
    16. Silva, D.J. & Bordalo, B.D. & Pereira, A.M. & Ventura, J. & Araújo, J.P., 2012. "Solid state magnetic refrigerator," Applied Energy, Elsevier, vol. 93(C), pages 570-574.
    17. Tyagi, Vineet Veer & Buddhi, D., 2007. "PCM thermal storage in buildings: A state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1146-1166, August.
    18. Oró, E. & de Gracia, A. & Castell, A. & Farid, M.M. & Cabeza, L.F., 2012. "Review on phase change materials (PCMs) for cold thermal energy storage applications," Applied Energy, Elsevier, vol. 99(C), pages 513-533.
    19. Chaudhry, Hassam Nasarullah & Hughes, Ben Richard & Ghani, Saud Abdul, 2012. "A review of heat pipe systems for heat recovery and renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2249-2259.
    20. Lee, Dongkeon & Park, Hwanjoo & Park, Gimin & Kim, Jiyong & Kim, Hoon & Cho, Hanki & Han, Seungwoo & Kim, Woochul, 2019. "Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device," Energy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:91:y:2012:i:1:p:51-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.