Advanced Search
MyIDEAS: Login to save this article or follow this journal

Recuperator dynamic performance: Experimental investigation with a microgas turbine test rig

Contents:

Author Info

  • Ferrari, Mario L.
  • Sorce, Alessandro
  • Pascenti, Matteo
  • Massardo, Aristide F.
Registered author(s):

    Abstract

    The aim of this work is the experimental analysis of steady-state and transient behavior of a primary surface recuperator installed in a 100kW commercial microgas turbine (mGT). The machine is integrated in an innovative test rig for high temperature fuel cell hybrid system emulation. It was designed and installed by the Thermochemical Power Group (TPG), at the University of Genoa, within the framework of the Felicitas and LARGE-SOFC European Integrated Projects. The high flexibility of the rig was exploited to perform tests on the recuperator operating in the standard cycle. Attention is mainly focused on its performance in transient conditions (start-up operations and load rejection tests). Start-up tests were carried out in both electrical grid-connected and stand-alone conditions, operating with different control strategies. Attention is focused on system response due to control strategy and on boundary temperature variation because of its influence on component life consumption.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911004612
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Applied Energy.

    Volume (Year): 88 (2011)
    Issue (Month): 12 ()
    Pages: 5090-5096

    as in new window
    Handle: RePEc:eee:appene:v:88:y:2011:i:12:p:5090-5096

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
    Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic

    Related research

    Keywords: Experimental; mGT recuperator; Dynamic behavior;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Iora, P. & Silva, P., 2013. "Innovative combined heat and power system based on a double shaft intercooled externally fired gas cycle," Applied Energy, Elsevier, vol. 105(C), pages 108-115.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:12:p:5090-5096. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.