IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i10p3515-3523.html
   My bibliography  Save this article

Coproduct market analysis and water footprint of simulated commercial algal biorefineries

Author

Listed:
  • Subhadra, Bobban G.
  • Edwards, Mark

Abstract

Algal biorefinery-based integrated industrial sector is getting increased attention in United States as a sustainable way of producing biofuel, high value products and feed ingredients. However, coproduct market analysis and water footprint (WFP) of algal biorefineries need to be studied before large scale deployment and adoption of this strategy. This article highlights the coproduct market and WFP analysis of two simulated algal biorefineries. The market analysis of primary product (biodiesel) and coproducts (algal meal (AM), omega-3 fatty acids (O3FA), glycerin) from these biorefineries showed that there is clear market for AM and O3FA up to certain level, there after diversification for other coproducts is desirable. Challenges include, vigorously finding new market and sectors to integrate the products and coproducts. Hence, comprehensive assessment of coproduct market and coproduct diversification among the biorefinery to meet the local needs and to avoid market glut by excessive production of single coproduct is needed. Our analysis also showed the clear advantages for multiproduct paradigm to attain high operational profit and to sustain initial industry developmental phase with clear return on investment. Our WFP analysis showed that algal biodiesel production requires 23–62LMJ−1 of energy produced and our calculations showed that the energy return on water invested (EROWI) for algal biodiesel at different scenarios ranged between 0.042 and 0.016MJ. Coproducts market analysis and WFP of algal biorefineries with different production scenarios illustrated the new policy and regulatory needs for the sustainable development of an algal biofuel sector to meet liquid fuel needs.

Suggested Citation

  • Subhadra, Bobban G. & Edwards, Mark, 2011. "Coproduct market analysis and water footprint of simulated commercial algal biorefineries," Applied Energy, Elsevier, vol. 88(10), pages 3515-3523.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:10:p:3515-3523
    DOI: 10.1016/j.apenergy.2010.12.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261910005714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2010.12.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taylor, Gail, 2008. "Biofuels and the biorefinery concept," Energy Policy, Elsevier, vol. 36(12), pages 4406-4409, December.
    2. Harto, Christopher & Meyers, Robert & Williams, Eric, 2010. "Life cycle water use of low-carbon transport fuels," Energy Policy, Elsevier, vol. 38(9), pages 4933-4944, September.
    3. Subhadra, Bobban G., 2011. "Water management policies for the algal biofuel sector in the Southwestern United States," Applied Energy, Elsevier, vol. 88(10), pages 3492-3498.
    4. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    5. Rio Carrillo, Anna Mercè & Frei, Christoph, 2009. "Water: A key resource in energy production," Energy Policy, Elsevier, vol. 37(11), pages 4303-4312, November.
    6. Subhadra, Bobban G., 2010. "Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach," Energy Policy, Elsevier, vol. 38(10), pages 5892-5901, October.
    7. Subhadra, Bobban & Edwards, Mark, 2010. "An integrated renewable energy park approach for algal biofuel production in United States," Energy Policy, Elsevier, vol. 38(9), pages 4897-4902, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    2. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.
    3. Pazuch, Felix Augusto & Nogueira, Carlos Eduardo Camargo & Souza, Samuel Nelson Melegari & Micuanski, Viviane Cavaler & Friedrich, Leandro & Lenz, Anderson Miguel, 2017. "Economic evaluation of the replacement of sugar cane bagasse by vinasse, as a source of energy in a power plant in the state of Paraná, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 34-42.
    4. Soratana, Kullapa & Khanna, Vikas & Landis, Amy E., 2013. "Re-envisioning the renewable fuel standard to minimize unintended consequences: A comparison of microalgal diesel with other biodiesels," Applied Energy, Elsevier, vol. 112(C), pages 194-204.
    5. Gnansounou, Edgard & Kenthorai Raman, Jegannathan, 2016. "Life cycle assessment of algae biodiesel and its co-products," Applied Energy, Elsevier, vol. 161(C), pages 300-308.
    6. Thomas Vallée & Gino Baudry & Patrice Guillotreau, 2017. "To discard or to coproduce by recycling waste: An output constraint analysis," Working Papers halshs-01591879, HAL.
    7. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    8. Solé-Bundó, Maria & Passos, Fabiana & Romero-Güiza, Maycoll S. & Ferrer, Ivet & Astals, Sergi, 2019. "Co-digestion strategies to enhance microalgae anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 471-482.
    9. Okadera, Tomohiro & Chontanawat, Jaruwan & Gheewala, Shabbir H., 2014. "Water footprint for energy production and supply in Thailand," Energy, Elsevier, vol. 77(C), pages 49-56.
    10. Zhu, L.D. & Hiltunen, E. & Antila, E. & Zhong, J.J. & Yuan, Z.H. & Wang, Z.M., 2014. "Microalgal biofuels: Flexible bioenergies for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1035-1046.
    11. Benjamin W. Portner & Antonio Valente & Sandy Guenther, 2021. "Sustainability Assessment of Combined Animal Fodder and Fuel Production from Microalgal Biomass," IJERPH, MDPI, vol. 18(21), pages 1-18, October.
    12. Baudry, Gino & Macharis, Cathy & Vallée, Thomas, 2018. "Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels though a range-," Energy, Elsevier, vol. 155(C), pages 1032-1046.
    13. Alaswad, A. & Dassisti, M. & Prescott, T. & Olabi, A.G., 2015. "Technologies and developments of third generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1446-1460.
    14. Colin M. Beal & Robert E. Hebner & Michael E. Webber & Rodney S. Ruoff & A. Frank Seibert & Carey W. King, 2012. "Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results," Energies, MDPI, vol. 5(6), pages 1-39, June.
    15. Haase, Rachel & Bielicki, Jeffrey & Kuzma, Jennifer, 2013. "Innovation in emerging energy technologies: A case study analysis to inform the path forward for algal biofuels," Energy Policy, Elsevier, vol. 61(C), pages 1595-1607.
    16. Moraes, Bruna S. & Junqueira, Tassia L. & Pavanello, Lucas G. & Cavalett, Otávio & Mantelatto, Paulo E. & Bonomi, Antonio & Zaiat, Marcelo, 2014. "Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?," Applied Energy, Elsevier, vol. 113(C), pages 825-835.
    17. Abdullah, Bawadi & Syed Muhammad, Syed Anuar Faua’ad & Shokravi, Zahra & Ismail, Shahrul & Kassim, Khairul Anuar & Mahmood, Azmi Nik & Aziz, Md Maniruzzaman A., 2019. "Fourth generation biofuel: A review on risks and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 37-50.
    18. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    19. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    20. Dubreuil, Aurelie & Assoumou, Edi & Bouckaert, Stephanie & Selosse, Sandrine & Maı¨zi, Nadia, 2013. "Water modeling in an energy optimization framework – The water-scarce middle east context," Applied Energy, Elsevier, vol. 101(C), pages 268-279.
    21. Lam, Man Kee & Lee, Keat Teong, 2012. "Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production," Applied Energy, Elsevier, vol. 94(C), pages 303-308.
    22. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    23. Kang, Seongwhan & Heo, Seongmin & Realff, Matthew J. & Lee, Jay H., 2020. "Three-stage design of high-resolution microalgae-based biofuel supply chain using geographic information system," Applied Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    2. Alvin B. Culaba & Aristotle T. Ubando & Phoebe Mae L. Ching & Wei-Hsin Chen & Jo-Shu Chang, 2020. "Biofuel from Microalgae: Sustainable Pathways," Sustainability, MDPI, vol. 12(19), pages 1-19, September.
    3. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    4. Subhadra, Bobban G., 2011. "Water management policies for the algal biofuel sector in the Southwestern United States," Applied Energy, Elsevier, vol. 88(10), pages 3492-3498.
    5. Subhadra, Bobban G., 2011. "Macro-level integrated renewable energy production schemes for sustainable development," Energy Policy, Elsevier, vol. 39(4), pages 2193-2196, April.
    6. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    7. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    8. Colin M. Beal & Robert E. Hebner & Michael E. Webber & Rodney S. Ruoff & A. Frank Seibert & Carey W. King, 2012. "Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results," Energies, MDPI, vol. 5(6), pages 1-39, June.
    9. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    10. Takeshita, Takayuki, 2011. "Competitiveness, role, and impact of microalgal biodiesel in the global energy future," Applied Energy, Elsevier, vol. 88(10), pages 3481-3491.
    11. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Uday Singh & A. Ahluwalia, 2013. "Microalgae: a promising tool for carbon sequestration," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 73-95, January.
    13. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    14. Ajeej, Amritha & Thanikal, Joseph V & Narayanan, C M & Senthil Kumar, R., 2015. "An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with microalgae and waste paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 270-276.
    15. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part I," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1427-1445.
    16. Kleiman, Rachel M. & Characklis, Gregory W. & Kern, Jordan D. & Gerlach, Robin, 2021. "Characterizing weather-related biophysical and financial risks in algal biofuel production," Applied Energy, Elsevier, vol. 294(C).
    17. Yen, Jeff & Bras, Bert, 2012. "A system model for assessing vehicle use-phase water consumption in urban mobility networks," Energy Policy, Elsevier, vol. 51(C), pages 474-492.
    18. Okadera, Tomohiro & Chontanawat, Jaruwan & Gheewala, Shabbir H., 2014. "Water footprint for energy production and supply in Thailand," Energy, Elsevier, vol. 77(C), pages 49-56.
    19. Aasma Saeed & Muhammad Asif Hanif & Asma Hanif & Umer Rashid & Javed Iqbal & Muhammad Irfan Majeed & Bryan R. Moser & Ali Alsalme, 2021. "Production of Biodiesel from Spirogyra elongata , a Common Freshwater Green Algae with High Oil Content," Sustainability, MDPI, vol. 13(22), pages 1-10, November.
    20. John J. Milledge & Benjamin Smith & Philip W. Dyer & Patricia Harvey, 2014. "Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass," Energies, MDPI, vol. 7(11), pages 1-29, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:10:p:3515-3523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.