IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i5p1793-1799.html
   My bibliography  Save this article

Thermal performance optimization of a flat plate solar air heater using genetic algorithm

Author

Listed:
  • Varun
  • Siddhartha

Abstract

Thermal performance of solar air heater is low and different techniques are adopted to increase the performance of solar air heaters, such as: fins, artificial roughness etc. In this paper an attempt has been done to optimize the thermal performance of flat plate solar air heater by considering the different system and operating parameters to obtain maximum thermal performance. Thermal performance is obtained for different Reynolds number, emissivity of the plate, tilt angle and number of glass plates by using genetic algorithm.

Suggested Citation

  • Varun & Siddhartha, 2010. "Thermal performance optimization of a flat plate solar air heater using genetic algorithm," Applied Energy, Elsevier, vol. 87(5), pages 1793-1799, May.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:5:p:1793-1799
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00443-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris A., 2004. "Optimization of solar systems using artificial neural-networks and genetic algorithms," Applied Energy, Elsevier, vol. 77(4), pages 383-405, April.
    2. Gholap, A.K. & Khan, J.A., 2007. "Design and multi-objective optimization of heat exchangers for refrigerators," Applied Energy, Elsevier, vol. 84(12), pages 1226-1239, December.
    3. Senjyu, Tomonobu & Hayashi, Daisuke & Yona, Atsushi & Urasaki, Naomitsu & Funabashi, Toshihisa, 2007. "Optimal configuration of power generating systems in isolated island with renewable energy," Renewable Energy, Elsevier, vol. 32(11), pages 1917-1933.
    4. Varun, & Saini, R.P. & Singal, S.K., 2008. "Investigation of thermal performance of solar air heater having roughness elements as a combination of inclined and transverse ribs on the absorber plate," Renewable Energy, Elsevier, vol. 33(6), pages 1398-1405.
    5. Doodman, A.R. & Fesanghary, M. & Hosseini, R., 2009. "A robust stochastic approach for design optimization of air cooled heat exchangers," Applied Energy, Elsevier, vol. 86(7-8), pages 1240-1245, July.
    6. Koroneos, C. & Michailidis, M. & Moussiopoulos, N., 2004. "Multi-objective optimization in energy systems: the case study of Lesvos Island, Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(1), pages 91-100, February.
    7. Bhagoria, J.L & Saini, J.S & Solanki, S.C, 2002. "Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate," Renewable Energy, Elsevier, vol. 25(3), pages 341-369.
    8. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2009. "Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks," Applied Energy, Elsevier, vol. 86(9), pages 1442-1449, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Ming & Yang, Xudong & Li, Xing & Wang, Zhifeng & Wang, Pengsu, 2014. "Design and optimization of a solar air heater with offset strip fin absorber plate," Applied Energy, Elsevier, vol. 113(C), pages 1349-1362.
    2. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    3. Dong, Yao & Wang, Jianzhou & Jiang, He & Shi, Xiaomeng, 2013. "Intelligent optimized wind resource assessment and wind turbines selection in Huitengxile of Inner Mongolia, China," Applied Energy, Elsevier, vol. 109(C), pages 239-253.
    4. Siddhartha, & Sharma, Naveen & Varun,, 2012. "A particle swarm optimization algorithm for optimization of thermal performance of a smooth flat plate solar air heater," Energy, Elsevier, vol. 38(1), pages 406-413.
    5. Rosas-Flores, Jorge Alberto & Rosas-Flores, Dionicio & Fernández Zayas, José Luis, 2016. "Potential energy saving in urban and rural households of Mexico by use of solar water heaters, using geographical information system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 243-252.
    6. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2012. "Investigations on thermo-hydraulic performance due to flow-attack-angle in V-down rib with gap in a rectangular duct of solar air heater," Applied Energy, Elsevier, vol. 97(C), pages 907-912.
    7. Hadidi, Amin, 2015. "A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm," Applied Energy, Elsevier, vol. 150(C), pages 196-210.
    8. Wang, Limin & Deng, Lei & Ji, Chenglong & Liang, Erkai & Wang, Changxia & Che, Defu, 2016. "Multi-objective optimization of geometrical parameters of corrugated-undulated heat transfer surfaces," Applied Energy, Elsevier, vol. 174(C), pages 25-36.
    9. Hassan, Hamdy & Abo-Elfadl, Saleh & El-Dosoky, M.F., 2020. "An experimental investigation of the performance of new design of solar air heater (tubular)," Renewable Energy, Elsevier, vol. 151(C), pages 1055-1066.
    10. Sharma, Naveen & Varun, & Siddhartha,, 2012. "Stochastic techniques used for optimization in solar systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1399-1411.
    11. Zahraee, S.M. & Khalaji Assadi, M. & Saidur, R., 2016. "Application of Artificial Intelligence Methods for Hybrid Energy System Optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 617-630.
    12. Goel, Varun & Kumar, Rajneesh & Bhattacharyya, Suvanjan & Tyagi, V.V. & Abusorrah, Abdullah M., 2021. "A comprehensive parametric investigation of hemispherical cavities on thermal performance and flow-dynamics in the triangular-duct solar-assisted air-heater," Renewable Energy, Elsevier, vol. 173(C), pages 896-912.
    13. Cabello, J.M. & Cejudo, J.M. & Luque, M. & Ruiz, F. & Deb, K. & Tewari, R., 2011. "Optimization of the size of a solar thermal electricity plant by means of genetic algorithms," Renewable Energy, Elsevier, vol. 36(11), pages 3146-3153.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.
    2. Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
    3. Lanjewar, Atul & Bhagoria, J.L. & Sarviya, R.M., 2011. "Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate," Energy, Elsevier, vol. 36(7), pages 4531-4541.
    4. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    5. Sharma, Naveen & Varun, & Siddhartha,, 2012. "Stochastic techniques used for optimization in solar systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1399-1411.
    6. Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B., 2014. "Effect of roughness geometries on heat transfer enhancement in solar thermal systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 347-378.
    7. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
    8. Lanjewar, A.M. & Bhagoria, J.L. & Agrawal, M.K., 2015. "Review of development of artificial roughness in solar air heater and performance evaluation of different orientations for double arc rib roughness," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1214-1223.
    9. Khaled, Mahmoud & Harambat, Fabien & Hage, Hicham El & Peerhossaini, Hassan, 2011. "Spatial optimization of an underhood cooling module – Towards an innovative control approach," Applied Energy, Elsevier, vol. 88(11), pages 3841-3849.
    10. Sharma, Sanjay K. & Kalamkar, Vilas R., 2015. "Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 413-435.
    11. Patil, Anil Kumar, 2015. "Heat transfer mechanism and energy efficiency of artificially roughened solar air heaters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 681-689.
    12. Alam, Tabish & Saini, R.P. & Saini, J.S., 2014. "Use of turbulators for heat transfer augmentation in an air duct – A review," Renewable Energy, Elsevier, vol. 62(C), pages 689-715.
    13. Chamoli, Sunil & Thakur, N.S. & Saini, J.S., 2012. "A review of turbulence promoters used in solar thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3154-3175.
    14. Li, Qi & Flamant, Gilles & Yuan, Xigang & Neveu, Pierre & Luo, Lingai, 2011. "Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4855-4875.
    15. Yadav, Anil Singh & Bhagoria, J.L., 2013. "Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 60-79.
    16. Alam, Tabish & Kim, Man-Hoe, 2017. "A critical review on artificial roughness provided in rectangular solar air heater duct," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 387-400.
    17. Kumar, Vikash & Murmu, Ramesh, 2021. "Experimental investigation for thermal performance of inclined spherical ball roughened solar air duct," Renewable Energy, Elsevier, vol. 172(C), pages 1365-1392.
    18. Bhushan, Brij & Singh, Ranjit, 2010. "A review on methodology of artificial roughness used in duct of solar air heaters," Energy, Elsevier, vol. 35(1), pages 202-212.
    19. Oikonomou, Emmanouil K. & Kilias, Vassilios & Goumas, Aggelos & Rigopoulos, Alexandrous & Karakatsani, Eirini & Damasiotis, Markos & Papastefanakis, Dimitrios & Marini, Natassa, 2009. "Renewable energy sources (RES) projects and their barriers on a regional scale: The case study of wind parks in the Dodecanese islands, Greece," Energy Policy, Elsevier, vol. 37(11), pages 4874-4883, November.
    20. Khaled, Mahmoud & Mangi, Fareed & Hage, Hisham El & Harambat, Fabien & Peerhossaini, Hassan, 2012. "Fan air flow analysis and heat transfer enhancement of vehicle underhood cooling system – Towards a new control approach for fuel consumption reduction," Applied Energy, Elsevier, vol. 91(1), pages 439-450.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:5:p:1793-1799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.