IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i10p1949-1955.html
   My bibliography  Save this article

Comparison of energy conservation building codes of Iran, Turkey, Germany, China, ISO 9164 and EN 832

Author

Listed:
  • Fayaz, Rima
  • Kari, Behrouz M.

Abstract

To improve the energy efficiency of buildings via compliance to regulation in Iran, Code No. 19 was devised in 1991. The code lacks high level aims and objectives, addressing the characteristics of Iranian buildings. As a consequence, the code has been revised and is not completely implemented in practice, and still remains inefficient. As with any energy coding system, this code has to identify the right balance between the different energy variables for the Iranian climate and way of life. In order to assist improvements to high level objectives of Code 19, this code is compared with ISO 9164, EN 832, German regulation, TS 825 of Turkey and China's GB 50189 to understand how these have adapted international standards to national features. In order to test the appropriateness of Code 19, five case study buildings in Iran are assessed against Code 19 as well as Turkish standard TS 825 and the results are compared. The results demonstrate that Code 19 is efficient in calculations of building envelope, but it needs improvements in the areas of ventilation, gains from internal and solar sources. The paper concludes by offering suggestions for improving the code.

Suggested Citation

  • Fayaz, Rima & Kari, Behrouz M., 2009. "Comparison of energy conservation building codes of Iran, Turkey, Germany, China, ISO 9164 and EN 832," Applied Energy, Elsevier, vol. 86(10), pages 1949-1955, October.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:10:p:1949-1955
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00342-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belusko, M. & Bruno, F. & Saman, W., 2011. "Investigation of the thermal resistance of timber attic spaces with reflective foil and bulk insulation, heat flow up," Applied Energy, Elsevier, vol. 88(1), pages 127-137, January.
    2. Ingrid Allard & Thomas Olofsson & Gireesh Nair, 2017. "Energy Performance Indicators in the Swedish Building Procurement Process," Sustainability, MDPI, vol. 9(10), pages 1-23, October.
    3. Joudi, Ali & Svedung, Harald & Bales, Chris & Rönnelid, Mats, 2011. "Highly reflective coatings for interior and exterior steel cladding and the energy efficiency of buildings," Applied Energy, Elsevier, vol. 88(12), pages 4655-4666.
    4. Mourshed, Monjur, 2011. "The impact of the projected changes in temperature on heating and cooling requirements in buildings in Dhaka, Bangladesh," Applied Energy, Elsevier, vol. 88(11), pages 3737-3746.
    5. Handing Guo & Wanzhen Qiao & Jiren Liu, 2019. "Dynamic Feedback Analysis of Influencing Factors of Existing Building Energy-Saving Renovation Market Based on System Dynamics in China," Sustainability, MDPI, vol. 11(1), pages 1-16, January.
    6. Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
    7. Mourshed, Monjur, 2016. "Climatic parameters for building energy applications: A temporal-geospatial assessment of temperature indicators," Renewable Energy, Elsevier, vol. 94(C), pages 55-71.
    8. Haleh Boostani & Polat Hancer, 2018. "A Model for External Walls Selection in Hot and Humid Climates," Sustainability, MDPI, vol. 11(1), pages 1-23, December.
    9. Pan, Wei & Garmston, Helen, 2012. "Building regulations in energy efficiency: Compliance in England and Wales," Energy Policy, Elsevier, vol. 45(C), pages 594-605.
    10. Özkan, Derya B. & Onan, Cenk, 2011. "Optimization of insulation thickness for different glazing areas in buildings for various climatic regions in Turkey," Applied Energy, Elsevier, vol. 88(4), pages 1331-1342, April.
    11. Ozalp, C. & Saydam, D.B. & Çerçi, K.N. & Hürdoğan, E. & Moran, H., 2019. "Evaluation of a sample building with different type building elements in an energetic and environmental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Başoğul, Yusuf & Keçebaş, Ali, 2011. "Economic and environmental impacts of insulation in district heating pipelines," Energy, Elsevier, vol. 36(10), pages 6156-6164.
    13. Pan, Wei & Garmston, Helen, 2012. "Compliance with building energy regulations for new-build dwellings," Energy, Elsevier, vol. 48(1), pages 11-22.
    14. Jiayu Li & Bohong Zheng & Xiao Chen & Yihua Zhou & Jifa Rao & Komi Bernard Bedra, 2020. "Research on Annual Thermal Environment of Non-Hvac Building Regulated by Window-to-Wall Ratio in a Chinese City (Chenzhou)," Sustainability, MDPI, vol. 12(16), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:10:p:1949-1955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.