IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v84y2009i7-8p853-862.html
   My bibliography  Save this article

Analysis of energy use and carbon losses in the chemical industry

Author

Listed:
  • Neelis, Maarten
  • Patel, Martin
  • Bach, Pieter
  • Blok, Kornelis

Abstract

A preliminary bottom-up analysis of the energy use in the chemical industry has been performed, using a model containing datasets on production processes for 52 of the most important bulk chemicals as well as production volumes for these chemicals. The processes analysed are shown to cover between 70% and 100% of the total energy use in the chemical sector. Energy use and the heat effects of the reactions taking place are separately quantified. The processes are also compared with energetically-ideal processes following the stoichometric reactions. The comparison shows that there is significant room for process improvements, both in the direction of more selective processes and in the direction of further energy-savings.

Suggested Citation

  • Neelis, Maarten & Patel, Martin & Bach, Pieter & Blok, Kornelis, 2009. "Analysis of energy use and carbon losses in the chemical industry," Applied Energy, Elsevier, vol. 84(7-8), pages 853-862, July.
  • Handle: RePEc:eee:appene:v:84:y:2009:i:7-8:p:853-862
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(07)00018-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patel, M., 2003. "Cumulative energy demand (CED) and cumulative CO2 emissions for products of the organic chemical industry," Energy, Elsevier, vol. 28(7), pages 721-740.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattia Rapa & Laura Gobbi & Roberto Ruggieri, 2020. "Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources," Energies, MDPI, vol. 13(23), pages 1-16, November.
    2. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley & Tortato, Ubiratã, 2018. "Measuring energy performance: A process based approach," Applied Energy, Elsevier, vol. 222(C), pages 540-553.
    3. Fahd, S. & Fiorentino, G. & Mellino, S. & Ulgiati, S., 2012. "Cropping bioenergy and biomaterials in marginal land: The added value of the biorefinery concept," Energy, Elsevier, vol. 37(1), pages 79-93.
    4. Rebekka Volk & Christoph Stallkamp & Justus J. Steins & Savina Padumane Yogish & Richard C. Müller & Dieter Stapf & Frank Schultmann, 2021. "Techno‐economic assessment and comparison of different plastic recycling pathways: A German case study," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1318-1337, October.
    5. Carlos E. Gómez-Camacho & Bernardo Ruggeri, 2019. "Energy Sustainability Analysis (ESA) of Energy-Producing Processes: A Case Study on Distributed H 2 Production," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    6. Ozalp, Nesrin & Hyman, Barry, 2007. "Allocation of energy inputs among the end-uses in the US petroleum and coal products industry," Energy, Elsevier, vol. 32(8), pages 1460-1470.
    7. Sofia Russo & Alicia Valero & Antonio Valero & Marta Iglesias-Émbil, 2021. "Exergy-Based Assessment of Polymers Production and Recycling: An Application to the Automotive Sector," Energies, MDPI, vol. 14(2), pages 1-19, January.
    8. Ren, Tao & Patel, Martin K. & Blok, Kornelis, 2008. "Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs," Energy, Elsevier, vol. 33(5), pages 817-833.
    9. Neelis, Maarten & Ramirez-Ramirez, Andrea & Patel, Martin & Farla, Jacco & Boonekamp, Piet & Blok, Kornelis, 2007. "Energy efficiency developments in the Dutch energy-intensive manufacturing industry, 1980-2003," Energy Policy, Elsevier, vol. 35(12), pages 6112-6131, December.
    10. Neelis, Maarten & Patel, Martin & Blok, Kornelis & Haije, Wim & Bach, Pieter, 2007. "Approximation of theoretical energy-saving potentials for the petrochemical industry using energy balances for 68 key processes," Energy, Elsevier, vol. 32(7), pages 1104-1123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:84:y:2009:i:7-8:p:853-862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.