IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v82y2005i4p331-344.html
   My bibliography  Save this article

Underground water-source loop heat-pump air-conditioning system applied in a residential building in Beijing

Author

Listed:
  • Chen, Chao
  • Sun, Feng-ling
  • Feng, Lei
  • Liu, Ming

Abstract

In this paper, we report on an underground water-source water-loop heat-pump (UWSWLHP) air-conditioning system for a tall apartment building in Beijing. Water at 14 °C was used as an external low-temperature heat-source. By analyzing field-test data for two years, the authors assessed the operating and controlling conditions of the system. Based on the electricity consumed by public-use air-conditioning power equipment and terminal heat-pumps, the authors put forward an overall evaluation of the energy-conservation characteristics of the system.

Suggested Citation

  • Chen, Chao & Sun, Feng-ling & Feng, Lei & Liu, Ming, 2005. "Underground water-source loop heat-pump air-conditioning system applied in a residential building in Beijing," Applied Energy, Elsevier, vol. 82(4), pages 331-344, December.
  • Handle: RePEc:eee:appene:v:82:y:2005:i:4:p:331-344
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00198-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gjoka, Kristian & Rismanchi, Behzad & Crawford, Robert H., 2023. "Fifth-generation district heating and cooling systems: A review of recent advancements and implementation barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Cristina Baglivo & Delia D’Agostino & Paolo Maria Congedo, 2018. "Design of a Ventilation System Coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE) for a Residential Building in a Warm Climate," Energies, MDPI, vol. 11(8), pages 1-27, August.
    3. Zhu, Na & Hu, Pingfang & Wang, Wei & Yu, Jianming & Lei, Fei, 2015. "Performance analysis of ground water-source heat pump system with improved control strategies for building retrofit," Renewable Energy, Elsevier, vol. 80(C), pages 324-330.
    4. Yang, Seung-Hwan & Rhee, Joong Yong, 2013. "Utilization and performance evaluation of a surplus air heat pump system for greenhouse cooling and heating," Applied Energy, Elsevier, vol. 105(C), pages 244-251.
    5. Kwon, Ohkyung & Cha, Dongan & Park, Chasik, 2013. "Performance evaluation of a two-stage compression heat pump system for district heating using waste energy," Energy, Elsevier, vol. 57(C), pages 375-381.
    6. Kwon Sook Park & Seiyong Kim, 2018. "Utilising Unused Energy Resources for Sustainable Heating and Cooling System in Buildings: A Case Study of Geothermal Energy and Water Sources in a University," Energies, MDPI, vol. 11(7), pages 1-8, July.
    7. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    8. Young-Ju Jung & Hyo-Jun Kim & Bo-Eun Choi & Jae-Hun Jo & Young-Hum Cho, 2016. "A Study on the Efficiency Improvement of Multi-Geothermal Heat Pump Systems in Korea Using Coefficient of Performance," Energies, MDPI, vol. 9(5), pages 1-19, May.
    9. Michopoulos, [alpha]. & [Kappa]yriakis, [Nu]., 2009. "Predicting the fluid temperature at the exit of the vertical ground heat exchangers," Applied Energy, Elsevier, vol. 86(10), pages 2065-2070, October.
    10. Paolo Maria Congedo & Caterina Lorusso & Maria Grazia De Giorgi & Riccardo Marti & Delia D’Agostino, 2016. "Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis," Energies, MDPI, vol. 9(11), pages 1-14, November.
    11. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo, 2012. "Buildings dynamic simulation: Water loop heat pump systems analysis for European climates," Applied Energy, Elsevier, vol. 91(1), pages 222-234.
    12. Wu, Xuan & Wang, Zhengwen & Jin, Guang & Yang, Xue & Zhang, Zhiqiang & Bi, Wenming, 2016. "Development and experimental study on testing platform for rock-soil thermal response tester," Renewable Energy, Elsevier, vol. 87(P1), pages 765-771.
    13. Liu, Y. & Qin, X.S. & Chiew, Y.M., 2013. "Investigation on potential applicability of subsurface cooling in Singapore," Applied Energy, Elsevier, vol. 103(C), pages 197-206.
    14. Michopoulos, A. & Zachariadis, T. & Kyriakis, N., 2013. "Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger," Energy, Elsevier, vol. 51(C), pages 349-357.
    15. Han, H.J. & Jeon, Y.I. & Lim, S.H. & Kim, W.W. & Chen, K., 2010. "New developments in illumination, heating and cooling technologies for energy-efficient buildings," Energy, Elsevier, vol. 35(6), pages 2647-2653.
    16. Rosiek, Sabina & Batlles, Francisco Javier, 2013. "Renewable energy solutions for building cooling, heating and power system installed in an institutional building: Case study in southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 147-168.
    17. Michopoulos, A. & Papakostas, K.T. & Kyriakis, N., 2011. "Potential of autonomous ground-coupled heat pump system installations in Greece," Applied Energy, Elsevier, vol. 88(6), pages 2122-2129, June.
    18. Rosiek, S. & Batlles, F.J., 2012. "Shallow geothermal energy applied to a solar-assisted air-conditioning system in southern Spain: Two-year experience," Applied Energy, Elsevier, vol. 100(C), pages 267-276.
    19. Young-Ju Jung & Hyo-Jun Kim & Kyung-Ju Shin & Jae-Hun Jo & Yong-Shik Kim & Young-Hum Cho, 2015. "Development of the Hybrid Operation Method of a Multi-Geothermal Heat Pump System and Absorption Chiller-Heater," Energies, MDPI, vol. 8(9), pages 1-24, August.
    20. Francisco Javier Fernández & María Belén Folgueras & Inés Suárez, 2017. "Study and Optimization of Design Parameters in Water Loop Heat Pump Systems for Office Buildings in the Iberian Peninsula," Energies, MDPI, vol. 10(12), pages 1-12, November.
    21. Wang, Dan-Yi & Wang, Xueqing & Ding, Ru-Xi, 2022. "Welfare maximization with the least subsidy: Pricing model for surface water loop heat pump PPP projects considering occupancy rate growth and coefficient of performance," Renewable Energy, Elsevier, vol. 194(C), pages 1131-1141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:82:y:2005:i:4:p:331-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.