IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v80y2005i3p307-326.html
   My bibliography  Save this article

Performance of multi-functional domestic heat-pump system

Author

Listed:
  • Ji, Jie
  • Pei, Gang
  • Chow, Tin-tai
  • He, Wei
  • Zhang, Aifeng
  • Dong, Jun
  • Yi, Hua

Abstract

The working principles and the basic features of a multi-functional domestic heat-pump (MDHP) system are introduced in this paper. Comparatively, the system can provide much better energy performance and higher equipment utilization throughout a year, causes less thermal pollution than the heat-pump water heater and the domestic air-conditioner. A prototype model of the MDHP system was assembled and its operation performance was tested. The results indicated that the new system can save energy through multi-duties, and can work stably under prolonged operation in regions having mild-winter temperatures. A numerical model of the system was also developed, and calibrated by the experimental data. The numerical model was found robust and accurate in predicting the equipment operation, and therefore can be applied to evaluate the system's performance under a spectrum of working environment and alternative equipment designs.

Suggested Citation

  • Ji, Jie & Pei, Gang & Chow, Tin-tai & He, Wei & Zhang, Aifeng & Dong, Jun & Yi, Hua, 2005. "Performance of multi-functional domestic heat-pump system," Applied Energy, Elsevier, vol. 80(3), pages 307-326, March.
  • Handle: RePEc:eee:appene:v:80:y:2005:i:3:p:307-326
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00058-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rousseau, P.G. & Greyvenstein, G.P., 2000. "Enhancing the impact of heat pump water heaters in the South African commercial sector," Energy, Elsevier, vol. 25(1), pages 51-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blanco, David L. & Nagano, Katsunori & Morimoto, Masahiro, 2013. "Impact of control schemes of a monovalent inverter-driven water-to-water heat pump with a desuperheater in continental and subtropical climates through simulation," Applied Energy, Elsevier, vol. 109(C), pages 374-386.
    2. Liu, Yin & Ma, Jing & Zhou, Guanghui & Zhang, Chao & Wan, Wenlei, 2016. "Performance of a solar air composite heat source heat pump system," Renewable Energy, Elsevier, vol. 87(P3), pages 1053-1058.
    3. Rödder, Maximilian & Frank, Lena & Kirschner, Daniel & Neef, Matthias & Adam, Mario, 2018. "EnergiBUS4home – Sustainable energy resourcing in low-energy buildings," Energy, Elsevier, vol. 159(C), pages 638-647.
    4. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.
    5. Wang, Qin & He, Wei & Liu, Yuqian & Liang, Guofeng & Li, Jiarong & Han, Xiaohong & Chen, Guangming, 2012. "Vapor compression multifunctional heat pumps in China: A review of configurations and operational modes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6522-6538.
    6. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong, 2023. "Numerical exploration and experimental validation of a tri-generation heat pump system in cooling mode," Energy, Elsevier, vol. 273(C).
    7. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Optimal control of heat pump water heater-instantaneous shower using integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 201(C), pages 332-342.
    8. Win Jet Luo & Kun Ying Li & Jeng Min Huang & Chong Kai Yu, 2020. "Water Heating and Operational Mode Switching Effects on the Performance of a Multifunctional Heat Pump," Energies, MDPI, vol. 13(18), pages 1-25, September.
    9. She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.
    10. Shao, Suola & Zhang, Huan & You, Shijun & Zheng, Wandong & Jiang, Lingfei, 2019. "Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system," Applied Energy, Elsevier, vol. 247(C), pages 78-88.
    11. Fan, Hongming & Shao, Shuangquan & Tian, Changqing, 2014. "Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control," Applied Energy, Elsevier, vol. 113(C), pages 883-890.
    12. Kang, Shushuo & Li, Hongqiang & Lei, Jing & Liu, Lifang & Cai, Bo & Zhang, Guoqiang, 2015. "A new utilization approach of the waste heat with mid-low temperature in the combined heating and power system integrating heat pump," Applied Energy, Elsevier, vol. 160(C), pages 185-193.
    13. Sichilalu, Sam & Mathaba, Tebello & Xia, Xiaohua, 2017. "Optimal control of a wind–PV-hybrid powered heat pump water heater," Applied Energy, Elsevier, vol. 185(P2), pages 1173-1184.
    14. Soo-Jin Lee & Hansol Lim & Jae-Weon Jeong, 2021. "Energy Benefit of Liquid Desiccant-Assisted Humidification in Buildings during Winter Operation," Energies, MDPI, vol. 14(5), pages 1-24, March.
    15. Han, Youhua & Ma, Liangdong & Zhang, Jili & Mi, Peiyuan & Guo, Xiaochao, 2023. "Research on the adaptive proportional-integral control method of a direct-expansion photovoltaic-thermal heat pump system," Energy, Elsevier, vol. 281(C).
    16. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2016. "Numerical simulation and experimental validation of indirect expansion solar-assisted multi-functional heat pump," Renewable Energy, Elsevier, vol. 93(C), pages 280-290.
    17. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, J.J. & Wu, J.Y. & Wang, R.Z. & Li, S., 2011. "Experimental research and operation optimization of an air-source heat pump water heater," Applied Energy, Elsevier, vol. 88(11), pages 4128-4138.
    2. Hepbasli, Arif & Kalinci, Yildiz, 2009. "A review of heat pump water heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1211-1229, August.
    3. Goto, Hisanori & Goto, Mika & Sueyoshi, Toshiyuki, 2011. "Consumer choice on ecologically efficient water heaters: Marketing strategy and policy implications in Japan," Energy Economics, Elsevier, vol. 33(2), pages 195-208, March.
    4. Zou, Deqiu & Ma, Xianfeng & Liu, Xiaoshi & Zheng, Pengjun & Cai, Baiming & Huang, Jianfeng & Guo, Jiangrong & Liu, Mo, 2017. "Experimental research of an air-source heat pump water heater using water-PCM for heat storage," Applied Energy, Elsevier, vol. 206(C), pages 784-792.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:80:y:2005:i:3:p:307-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.