IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v71y2002i1p15-30.html
   My bibliography  Save this article

Future energy consumption and greenhouse gas emissions in Jordanian industries

Author

Listed:
  • Jaber, Jamal O.

Abstract

Most, i.e. 85%, of greenhouse gas (GHG) emissions in Jordan emanate as a result of fossil fuel combustion. The industrial sector consumed 23.3% of the total national fuel consumption for heat and electric-power generation in 1999. The CO2 emissions from energy use in manufacturing processes represent 12.1% of the total national CO2 emissions. Carbon dioxide is also released as a result of the calcining of carbonates during the manufacture of cement and iron. Electricity, which is the most expensive form of energy, in 1999 represented 45% of total fuel used for heat and power nationally. Heavy fuel oil and diesel oil represented 46% and 7%, respectively, of all energy used by industry. Scenarios for future energy-demands and the emissions of gaseous pollutants, including GHGs, have been predicted for the industrial sector. For these, the development of a baseline scenario relied on historical data concerning consumption, major industries' outputs, as well as upon pertinent published governmental policies and plans. Possible mitigation options that could lead to a reduction in GHG emissions are assessed, with the aim of achieving a 10% reduction by 2010, compared with the baseline scenario. Many viable CO2 emission mitigation measures have been identified for the industrial sector, and some of these can be considered as attractive opportunities due to the low financial investments required and short pay back periods. These mitigation options have been selected on the basis of low GHG emission rates and expert judgement as to their viability for wide-scale implementation and economic benefits. The predictions show that the use of more efficient lighting and motors, advanced energy systems and more effective boilers and furnaces will result in a significant reduction in the rates of GHG emissions at an initial cost of between 30 and 90 US$ t-1 of CO2 release avoided. However, most of these measures have a negative cost per ton of CO2 reduced, indicating short pay-back periods for the capital investments needed.

Suggested Citation

  • Jaber, Jamal O., 2002. "Future energy consumption and greenhouse gas emissions in Jordanian industries," Applied Energy, Elsevier, vol. 71(1), pages 15-30, January.
  • Handle: RePEc:eee:appene:v:71:y:2002:i:1:p:15-30
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(01)00041-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kablan, M. M., 2004. "Decision support for energy conservation promotion:: an analytic hierarchy process approach," Energy Policy, Elsevier, vol. 32(10), pages 1151-1158, July.
    2. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    3. Al-Ghandoor, A. & Al-Hinti, I. & Jaber, J.O. & Sawalha, S.A., 2008. "Electricity consumption and associated GHG emissions of the Jordanian industrial sector: Empirical analysis and future projection," Energy Policy, Elsevier, vol. 36(1), pages 258-267, January.
    4. Liao, Chun-Hsiung & Lu, Chin-Shan & Tseng, Po-Hsing, 2011. "Carbon dioxide emissions and inland container transport in Taiwan," Journal of Transport Geography, Elsevier, vol. 19(4), pages 722-728.
    5. Lee, W. L. & Yik, F. W. H., 2002. "Framework for formulating a performance-based incentive-rebate scale for the demand-side-energy management scheme for commercial buildings in Hong Kong," Applied Energy, Elsevier, vol. 73(2), pages 139-166, October.
    6. Ye, Xianming & Xia, Xiaohua & Zhang, Jiangfeng, 2013. "Optimal sampling plan for clean development mechanism energy efficiency lighting projects," Applied Energy, Elsevier, vol. 112(C), pages 1006-1015.
    7. Karali, Nihan & Xu, Tengfang & Sathaye, Jayant, 2014. "Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 120(C), pages 133-146.
    8. Jaber, Jamal O. & Awad, Wael & Rahmeh, Taieseer Abu & Alawin, Aiman A. & Al-Lubani, Suleiman & Dalu, Sameh Abu & Dalabih, Ali & Al-Bashir, Adnan, 2017. "Renewable energy education in faculties of engineering in Jordan: Relationship between demographics and level of knowledge of senior students’," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 452-459.
    9. Thambiran, Tirusha & Diab, Roseanne D., 2011. "Air quality and climate change co-benefits for the industrial sector in Durban, South Africa," Energy Policy, Elsevier, vol. 39(10), pages 6658-6666, October.
    10. Horschig, Thomas & Adams, Paul W.R. & Röder, Mirjam & Thornley, Patricia & Thrän, Daniela, 2016. "Reasonable potential for GHG savings by anaerobic biomethane in Germany and UK derived from economic and ecological analyses," Applied Energy, Elsevier, vol. 184(C), pages 840-852.
    11. Kablan, M.M, 2003. "Energy conservation projects implementation at Jordan’s industrial sector: a total quality management approach," Energy, Elsevier, vol. 28(15), pages 1533-1543.
    12. Mikulčić, Hrvoje & Vujanović, Milan & Duić, Neven, 2013. "Reducing the CO2 emissions in Croatian cement industry," Applied Energy, Elsevier, vol. 101(C), pages 41-48.
    13. Jaber, Jamal O. & Mamlook, Rustom & Awad, Wa'el, 2005. "Evaluation of energy conservation programs in residential sector using fuzzy logic methodology," Energy Policy, Elsevier, vol. 33(10), pages 1329-1338, July.
    14. Reeko Watanabe & Tsunemi Watanabe & Kyohei Wakui, 2021. "Acceptance of Main Power Generation Sources among Japan’s Undergraduate Students: The Roles of Knowledge, Experience, Trust, and Perceived Risk and Benefit," Sustainability, MDPI, vol. 13(22), pages 1, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:71:y:2002:i:1:p:15-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.