IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v355y2024ics0306261923017294.html
   My bibliography  Save this article

Experimental analysis and multi-objective optimization of flame dynamics and combustion performance in methane-fueled slit-type combustors

Author

Listed:
  • Gao, Lingjie
  • Tang, Aikun
  • Cai, Tao
  • Tenkolu, Getachew Alemu

Abstract

Achieving a high wall temperature and wide flame stability limit is of extreme significance for the maximization of power generation in hydrocarbon fuel-driven micro-thermophotovoltaic and thermoelectric devices. For this, detailed experimental investigations are conducted on variable channel height combustors, with the emphasis on analyzing the flame dynamics and thermal performance. A preliminary understanding of the multiple flame morphologies in the combustors is developed by varying the input working conditions and wall materials. The basic types of unstable flames are clarified. The pinch-off phenomenon of a weak flame in a slit combustor is observed for the first time, and the cell tends to decrease and emerge with an increase in the flow rate. The combustible range is shown to be extended with increasing the channel height, while it exhibits a non-monotonic changing trend with the combustor thermal conductivity which highlights the importance of the balance between heat transfer due to the flame-wall coupling and heat losses. Furthermore, a Kriging-NSGA-II optimization model is also developed to obtain the optimal characteristics in terms of radiation efficiency, standard deviation and volume power density. A Pareto-optimal front solution is determined to identify three distinct regions of thermal conductivities, which is crucially useful in guiding the design of practical micro-power systems based on different working requirements.

Suggested Citation

  • Gao, Lingjie & Tang, Aikun & Cai, Tao & Tenkolu, Getachew Alemu, 2024. "Experimental analysis and multi-objective optimization of flame dynamics and combustion performance in methane-fueled slit-type combustors," Applied Energy, Elsevier, vol. 355(C).
  • Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923017294
    DOI: 10.1016/j.apenergy.2023.122365
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jie & Wang, Junle & Zhao, Hongbo, 2018. "Optimization of the injection parameters and combustion chamber geometries of a diesel/natural gas RCCI engine," Energy, Elsevier, vol. 164(C), pages 837-852.
    2. Alipoor, Alireza & Saidi, Mohammad Hassan, 2017. "Numerical study of hydrogen-air combustion characteristics in a novel micro-thermophotovoltaic power generator," Applied Energy, Elsevier, vol. 199(C), pages 382-399.
    3. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).
    4. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
    5. Tang, Aikun & Cai, Tao & Deng, Jiang & Zhao, Dan & Huang, Qiuhan & Zhou, Chen, 2019. "Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors," Energy, Elsevier, vol. 179(C), pages 558-570.
    6. Gentillon, Philippe & Singh, Siddharth & Lakshman, Suhas & Zhang, Zhaolun & Paduthol, Appu & Ekins-Daukes, N.J. & Chan, Qing N. & Taylor, Robert A., 2019. "A comprehensive experimental characterisation of a novel porous media combustion-based thermophotovoltaic system with controlled emission," Applied Energy, Elsevier, vol. 254(C).
    7. Guo, Qiang & Liu, Jie & Wu, Binyang & Liu, Yize, 2022. "On the optimization of the double-layer combustion chamber with and without EGR of a diesel engine," Energy, Elsevier, vol. 247(C).
    8. Veeraragavan, Ananthanarayanan, 2015. "On flame propagation in narrow channels with enhanced wall thermal conduction," Energy, Elsevier, vol. 93(P1), pages 631-640.
    9. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Xu, Hongpeng & Li, Zhenwei & Tay, Kunlin & Zeng, Guang & Yu, Wenbin, 2020. "Investigation on premixed H2/C3H8/air combustion in porous medium combustor for the micro thermophotovoltaic application," Applied Energy, Elsevier, vol. 260(C).
    10. Xing, Chang & Liu, Li & Qiu, Penghua & Shen, Wenkai & Lyu, Yajin & Zhang, Zhuo & Wang, Hui & Wu, Shaohua & Qin, Yukun, 2017. "Combustion performance of an adjustable fuel feeding combustor under off-design conditions for a micro-gas turbine," Applied Energy, Elsevier, vol. 208(C), pages 12-24.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).
    2. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    4. Xie, Bo & Peng, Qingguo & E, Jiaqiang & Tu, Yaojie & Wei, Jia & Tang, Shihao & Song, Yangyang & Fu, Guang, 2022. "Effects of CO addition and multi-factors optimization on hydrogen/air combustion characteristics and thermal performance based on grey relational analysis," Energy, Elsevier, vol. 255(C).
    5. Habibi, Mohammad & Cui, Longji, 2023. "Modelling and performance analysis of a novel thermophotovoltaic system with enhanced radiative heat transfer for combined heat and power generation," Applied Energy, Elsevier, vol. 343(C).
    6. Wan, Jianlong & Zhao, Haibo, 2020. "Effect of thermal condition of solid wall on the stabilization of a preheated and holder-stabilized laminar premixed flame," Energy, Elsevier, vol. 200(C).
    7. E, Jiaqiang & Meng, Tian & Chen, Jingwei & Wu, Weiwei & Zhao, Xiaohuan & Zhang, Bin & Peng, Qingguo, 2021. "Effect analysis on performance enhancement of a hydrogen/air non-premixed micro combustor with sudden expansion and contraction structure," Energy, Elsevier, vol. 230(C).
    8. Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.
    9. Long Zhang & Shanshan Zhang & Hua Zhou & Zhuyin Ren & Hongchuan Wang & Xiuxun Wang, 2022. "Efficient Combustion of Low Calorific Industrial Gases: Opportunities and Challenges," Energies, MDPI, vol. 15(23), pages 1-14, December.
    10. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    11. Xiao Yang & Zhihong He & Lei Zhao & Shikui Dong & Heping Tan, 2019. "Effect of Channel Diameter on the Combustion and Thermal Behavior of a Hydrogen/Air Premixed Flame in a Swirl Micro-Combustor," Energies, MDPI, vol. 12(20), pages 1-16, October.
    12. Alipoor, Alireza & Mazaheri, Kiumars, 2020. "Maps of flame dynamics for premixed lean hydrogen-air combustion in a heated microchannel," Energy, Elsevier, vol. 194(C).
    13. Peng, Qingguo & Shi, Zhiwei & Xie, Bo & Huang, Zhixin & Tang, Shihao & Li, Xianhua & Huang, Haisong & E, Jiaqiang, 2023. "Optimisation of a micro-thermophotovoltaic with porous media inserted burner for electrical power improvement," Renewable Energy, Elsevier, vol. 215(C).
    14. Cai, Tao & Tang, Aikun & Zhao, Dan & Zhou, Chen & Huang, Qiuhan, 2020. "Flame dynamics and stability of premixed methane/air in micro-planar quartz combustors," Energy, Elsevier, vol. 193(C).
    15. Ni, Siliang & Zhao, Dan & Sellier, Mathieu & Li, Junwei & Chen, Xinjian & Li, Xinyan & Cao, Feng & Li, Weixuan, 2021. "Thermal performances and emitter efficiency improvement studies on premixed micro-combustors with different geometric shapes for thermophotovoltaics applications," Energy, Elsevier, vol. 226(C).
    16. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    17. Peng, Qingguo & E, Jiaqiang & Yang, W.M. & Xu, Hongpeng & Chen, Jingwei & Meng, Tian & Qiu, Runzhi, 2018. "Effects analysis on combustion and thermal performance enhancement of a nozzle-inlet micro tube fueled by the premixed hydrogen/air," Energy, Elsevier, vol. 160(C), pages 349-360.
    18. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    19. Zhao, He & Zhao, Dan & Becker, Sid & Rong, Hui & Zhao, Xiaohuan, 2023. "Entropy generation and improved thermal performance investigation on a hydrogen-fuelled double-channel microcombustor with Y-shaped internal fins," Energy, Elsevier, vol. 283(C).
    20. Fontana, Éliton & Battiston, Lucas & Oliveira, Rosivaldo G.A. & Capeletto, Claudia A. & Luz, Luiz F.L., 2022. "Beyond the combustion chamber: Heat transfer and its impact on micro-thermophotovoltaic systems performance," Energy, Elsevier, vol. 239(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923017294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.