IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v355y2024ics0306261923017063.html
   My bibliography  Save this article

Community stochastic domestic electricity forecasting

Author

Listed:
  • Amin, Amin
  • Mourshed, Monjur

Abstract

The domestic sector is a significant energy consumer – accounting for around 40% of global electricity demand – due to household demand diversity and complexity. An accurate and robust estimation of domestic electrical loads, environmental impacts, and energy-efficiency potential is crucial for optimal planning and management of energy systems and applications. However, uncertainties resulting from simplistic socio-technical attributes, microclimatic variations, and oversimplification of the effects of interdependent variables make domestic energy modelling challenging. In this research, a hybrid bottom-up community energy forecasting framework is developed to estimate sub-hourly domestic electricity demand using a combination of statistical and engineering modelling approaches by considering key factors influencing household consumption, including demographic characteristics, occupancy patterns, and the features, ownership, and utilisation patterns of electric appliances. The framework is tested on a community in Wales, UK and validated on an annual, daily, and sub-hourly basis with monitored electricity usage averages derived from the UK Energy Follow-Up Survey and the sub-national electricity consumption datasets. Results closely reflect annual and daily household demand at individual dwellings and aggregated levels, with an estimation accuracy of up to 90%. Moreover, the framework facilitates more reliable sub-hourly demand profiles compared to conventional simulation practices that overestimate daily electricity demand and sub-hourly peaks by up to 15% and 50%, respectively.

Suggested Citation

  • Amin, Amin & Mourshed, Monjur, 2024. "Community stochastic domestic electricity forecasting," Applied Energy, Elsevier, vol. 355(C).
  • Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923017063
    DOI: 10.1016/j.apenergy.2023.122342
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017063
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Hasanuzzaman & Ummu Salamah Zubir & Nur Iqtiyani Ilham & Hang Seng Che, 2017. "Global electricity demand, generation, grid system, and renewable energy polices: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    2. Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    3. Hong, Tianzhen & Chang, Wen-Kuei & Lin, Hung-Wen, 2013. "A fresh look at weather impact on peak electricity demand and energy use of buildings using 30-year actual weather data," Applied Energy, Elsevier, vol. 111(C), pages 333-350.
    4. Amin, Amin & Kem, Oudom & Gallegos, Pablo & Chervet, Philipp & Ksontini, Feirouz & Mourshed, Monjur, 2022. "Demand response in buildings: Unlocking energy flexibility through district-level electro-thermal simulation," Applied Energy, Elsevier, vol. 305(C).
    5. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    6. Bingtuan Gao & Xiaofeng Liu & Zhenyu Zhu, 2018. "A Bottom-Up Model for Household Load Profile Based on the Consumption Behavior of Residents," Energies, MDPI, vol. 11(8), pages 1-16, August.
    7. Oldewurtel, Frauke & Sturzenegger, David & Morari, Manfred, 2013. "Importance of occupancy information for building climate control," Applied Energy, Elsevier, vol. 101(C), pages 521-532.
    8. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    9. Hassan, Ahmed A. & El-Rayes, Khaled, 2024. "Optimal use of renewable energy technologies during building schematic design phase," Applied Energy, Elsevier, vol. 353(PA).
    10. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2020. "An Overview of Demand Response in Smart Grid and Optimization Techniques for Efficient Residential Appliance Scheduling Problem," Energies, MDPI, vol. 13(16), pages 1-31, August.
    11. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    12. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    13. Pothitou, Mary & Hanna, Richard F. & Chalvatzis, Konstantinos J., 2017. "ICT entertainment appliances’ impact on domestic electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 843-853.
    14. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    15. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    16. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.
    17. Virgilio Ciancio & Serena Falasca & Iacopo Golasi & Gabriele Curci & Massimo Coppi & Ferdinando Salata, 2018. "Influence of Input Climatic Data on Simulations of Annual Energy Needs of a Building: EnergyPlus and WRF Modeling for a Case Study in Rome (Italy)," Energies, MDPI, vol. 11(10), pages 1-17, October.
    18. Caputo, Paola & Costa, Gaia & Ferrari, Simone, 2013. "A supporting method for defining energy strategies in the building sector at urban scale," Energy Policy, Elsevier, vol. 55(C), pages 261-270.
    19. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    20. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    21. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & D'Amico, Antonino, 2019. "Results of a literature review on methods for estimating buildings energy demand at district level," Energy, Elsevier, vol. 175(C), pages 1130-1137.
    22. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    23. Glasgo, Brock & Hendrickson, Chris & Azevedo, Inês Lima, 2017. "Assessing the value of information in residential building simulation: Comparing simulated and actual building loads at the circuit level," Applied Energy, Elsevier, vol. 203(C), pages 348-363.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    2. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    3. Johari, F. & Peronato, G. & Sadeghian, P. & Zhao, X. & Widén, J., 2020. "Urban building energy modeling: State of the art and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    4. Valeria Todeschi & Roberto Boghetti & Jérôme H. Kämpf & Guglielmina Mutani, 2021. "Evaluation of Urban-Scale Building Energy-Use Models and Tools—Application for the City of Fribourg, Switzerland," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    5. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Oraiopoulos, A. & Howard, B., 2022. "On the accuracy of Urban Building Energy Modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Amin, Amin & Kem, Oudom & Gallegos, Pablo & Chervet, Philipp & Ksontini, Feirouz & Mourshed, Monjur, 2022. "Demand response in buildings: Unlocking energy flexibility through district-level electro-thermal simulation," Applied Energy, Elsevier, vol. 305(C).
    8. Yang, Xining & Hu, Mingming & Heeren, Niko & Zhang, Chunbo & Verhagen, Teun & Tukker, Arnold & Steubing, Bernhard, 2020. "A combined GIS-archetype approach to model residential space heating energy: A case study for the Netherlands including validation," Applied Energy, Elsevier, vol. 280(C).
    9. Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    10. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    12. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
    14. Chévez, Pedro Joaquín & Martini, Irene & Discoli, Carlos, 2019. "Methodology developed for the construction of an urban-energy diagnosis aimed to assess alternative scenarios: An intra-urban approach to foster cities’ sustainability," Applied Energy, Elsevier, vol. 237(C), pages 751-778.
    15. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
    16. Lu Jiang & Xingpeng Chen & Bing Xue, 2019. "Features, Driving Forces and Transition of the Household Energy Consumption in China: A Review," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    17. Pasichnyi, Oleksii & Wallin, Jörgen & Kordas, Olga, 2019. "Data-driven building archetypes for urban building energy modelling," Energy, Elsevier, vol. 181(C), pages 360-377.
    18. Shiyi Song & Hong Leng & Ran Guo, 2022. "Multi-Agent-Based Model for the Urban Macro-Level Impact Factors of Building Energy Consumption on Different Types of Land," Land, MDPI, vol. 11(11), pages 1-24, November.
    19. Lo Piano, S. & Smith, S.T., 2022. "Energy demand and its temporal flexibility: Approaches, criticalities and ways forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Kristensen, Martin Heine & Hedegaard, Rasmus Elbæk & Petersen, Steffen, 2020. "Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923017063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.