IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v355y2024ics0306261923015738.html
   My bibliography  Save this article

A model-based study of the evolution of gravel layer permeability under the synergistic blockage effect of sand particle transport and secondary hydrate formation

Author

Listed:
  • Deng, Fucheng
  • Wang, Yifei
  • Li, Xiaosen
  • Li, Gang
  • Wang, Yi
  • Huang, Bin

Abstract

When using gravel-packed completions to exploit hydrates, the synergistic blockage of gravel filling layer by sand and hydrate often arises. In this paper, we completed two kinds of permeability measurement experiments: experiments with different volume proportions of sand particles and experiments with different hydrate saturations in the pores of gravel filling layer. The variation in the permeability of a gravel filling layer under the simultaneous blockage due to small sand particles invasion and hydrate formation was studied experimentally. Based on the different assembly forms of spherical particles and classic permeability theory models, this paper first established an experimental model of the permeability of gravel filling layer formed by the secondary formation of hydrates under different sand volume proportions. Second, this paper analyzed the permeability measurement data. A modified permeability model based on the synergistic blockage mechanism of sand and hydrate in the gravel filling layer was obtained. Finally, this study revealed the permeability evolution of the gravel filling layer under sand intrusion and hydrate formation. The experimental data and permeability theory model results supported the following conclusions: (1) The assumption of sand particles gathering in clusters in the pores has a similar impact on permeability as the formation of hydrates at the center of the pores, resulting in an exponential decrease in permeability as the proportion of sand particles increases. (2) Based on the changes in the surface areas of pores in a gravel filling layer during the processes of sand intrusion and hydrate growth, a theoretical model of the relative permeability of gravel filling layer was established. (3) Analyzing the permeability measurement experimental data revealed that the presence of small sand particles in the experiment was more conducive to the formation of hydrates, and a high saturation of hydrates may have formed in some areas, leading to more serious blockages in the gravel filling layer. This study validated the effectiveness of the theoretical model of relative permeability through permeability measurement experiments and explored the mechanism of cooperative sand and hydrate plugging, providing a theoretical basis for the safe and efficient exploitation of hydrate reservoirs.

Suggested Citation

  • Deng, Fucheng & Wang, Yifei & Li, Xiaosen & Li, Gang & Wang, Yi & Huang, Bin, 2024. "A model-based study of the evolution of gravel layer permeability under the synergistic blockage effect of sand particle transport and secondary hydrate formation," Applied Energy, Elsevier, vol. 355(C).
  • Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923015738
    DOI: 10.1016/j.apenergy.2023.122209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Haijun & Wu, Peng & Li, Yanghui & Liu, Weiguo & Pan, Xuelian & Li, Qingping & He, Yufa & Song, Yongchen, 2023. "Gas permeability variation during methane hydrate dissociation by depressurization in marine sediments," Energy, Elsevier, vol. 263(PB).
    2. Wang, Haijun & Liu, Weiguo & Wu, Peng & Pan, Xuelian & You, Zeshao & Lu, Jingsheng & Li, Yanghui, 2023. "Gas recovery from marine hydrate reservoir: Experimental investigation on gas flow patterns considering pressure effect," Energy, Elsevier, vol. 275(C).
    3. Liang, Wei & Wang, Jianguo & Li, Peibo, 2022. "Gas production analysis for hydrate sediment with compound morphology by a new dynamic permeability model," Applied Energy, Elsevier, vol. 322(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Tao & Wu, Peng & You, Zeshao & Yu, Tao & Song, Qi & Song, Yuanxin & Li, Yanghui, 2023. "Deformation characteristics on anisotropic consolidated methane hydrate clayey-silty sediments of the South China Sea under heat injection," Energy, Elsevier, vol. 280(C).
    2. Li, Yanghui & Hu, Wenkang & Tang, Haoran & Wu, Peng & Liu, Tao & You, Zeshao & Yu, Tao & Song, Yongchen, 2023. "Mechanical properties of the interstratified hydrate-bearing sediment in permafrost zones," Energy, Elsevier, vol. 282(C).
    3. You, Zeshao & Li, Yanghui & Yang, Meixiao & Wu, Peng & Liu, Tao & Li, Jiayu & Hu, Wenkang & Song, Yongchen, 2024. "Investigation of particle-scale mechanical behavior of hydrate-bearing sands using DEM: Focus on hydrate habits," Energy, Elsevier, vol. 289(C).
    4. You, Zeshao & Li, Yanghui & Liu, Tao & Qu, Yong & Hu, Wenkang & Song, Yongchen, 2024. "Stress-strain response and deformation behavior of hydrate-bearing sands under different grain sizes: A particle-scale study using DEM," Energy, Elsevier, vol. 290(C).
    5. Cheng, Zucheng & Sun, Lintao & Liu, Yingying & Jiang, Lanlan & Chen, Bingbing & Song, Yongchen, 2023. "Study on the micro-macro kinetic and amino acid-enhanced separation of CO2-CH4 via sII hydrate," Renewable Energy, Elsevier, vol. 218(C).
    6. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    7. Stanislav L. Borodin & Nail G. Musakaev & Denis S. Belskikh, 2022. "Mathematical Modeling of a Non-Isothermal Flow in a Porous Medium Considering Gas Hydrate Decomposition: A Review," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    8. Chen, Zherui & Dai, Sining & Chen, Cong & Lyu, Huangwu & Zhang, Shuheng & Liu, Xuanji & Li, Yanghui, 2024. "Hydrate aggregation in oil-gas pipelines: Unraveling the dual role of asphalt and water," Energy, Elsevier, vol. 290(C).
    9. Liu, Zaixing & Ma, Shihui & Wu, Zhaoran & Liu, Zheyuan & Wang, Jiguang & Lang, Chen & Li, Yanghui, 2024. "Investigation of flow and viscosity characteristics of hydrate slurries within a visual-loop system," Energy, Elsevier, vol. 289(C).
    10. Wang, Haijun & Liu, Weiguo & Wu, Peng & Pan, Xuelian & You, Zeshao & Lu, Jingsheng & Li, Yanghui, 2023. "Gas recovery from marine hydrate reservoir: Experimental investigation on gas flow patterns considering pressure effect," Energy, Elsevier, vol. 275(C).
    11. Zhao, Qi & Chen, Zhao-Yang & Li, Xiao-Sen & Xia, Zhi-Ming, 2023. "Experimental study of CO2 hydrate formation under an electrostatic field," Energy, Elsevier, vol. 272(C).
    12. Li, Yanghui & Wang, Le & Xie, Yao & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Song, Yongchen, 2023. "Deformation characteristics of methane hydrate-bearing clayey and sandy sediments during depressurization dissociation," Energy, Elsevier, vol. 275(C).
    13. Yang, Lei & Shi, Kangji & Qu, Aoxing & Liang, Huiyong & Li, Qingping & Lv, Xin & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Liu, Yu & Xiao, Bo & Yang, Shengxiong & Zhao, Jiafei & Song, Yongchen, 2023. "The locally varying thermodynamic driving force dominates the gas production efficiency from natural gas hydrate-bearing marine sediments," Energy, Elsevier, vol. 276(C).
    14. Liu, Weiguo & Song, Qi & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Li, Yanghui, 2023. "Triaxial tests on anisotropic consolidated methane hydrate-bearing clayey-silty sediments of the South China Sea," Energy, Elsevier, vol. 284(C).
    15. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    16. Chen, Dong & Wang, XiaoMing & Zhang, JiaYi & He, Yan & Lin, Yan & Wang, Fei, 2023. "Inhibition on methane hydrate formation by polyacrylate superabsorbent hydrogel," Energy, Elsevier, vol. 284(C).
    17. Wu, Peng & Li, Yanghui & Yu, Tao & Wu, Zhaoran & Huang, Lei & Wang, Haijun & Song, Yongchen, 2023. "Microstructure evolution and dynamic permeability anisotropy during hydrate dissociation in sediment under stress state," Energy, Elsevier, vol. 263(PE).
    18. Wei Sun & Guiwang Li & Huating Qin & Shuxia Li & Jianchun Xu, 2023. "Enhanced Gas Production from Class II Gas Hydrate Reservoirs by the Multistage Fractured Horizontal Well," Energies, MDPI, vol. 16(8), pages 1-24, April.
    19. Liu, Yanzhen & Li, Qingping & Lv, Xin & Yang, Lei & Wang, Junfeng & Qiao, Fen & Zhao, Jiafei & Qi, Huiping, 2023. "The passive effect of clay particles on natural gas hydrate kinetic inhibitors," Energy, Elsevier, vol. 267(C).
    20. Lin, Decai & Lu, Jingsheng & Liu, Jia & Liang, Deqing & Li, Dongliang & Jin, Guangrong & Xia, Zhiming & Li, Xiaosen, 2023. "Numerical study on natural gas hydrate production by hot water injection combined with depressurization," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923015738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.