IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v275y2023ics0360544223008769.html
   My bibliography  Save this article

Gas recovery from marine hydrate reservoir: Experimental investigation on gas flow patterns considering pressure effect

Author

Listed:
  • Wang, Haijun
  • Liu, Weiguo
  • Wu, Peng
  • Pan, Xuelian
  • You, Zeshao
  • Lu, Jingsheng
  • Li, Yanghui

Abstract

Accurate acquisition of fluid flow patterns is crucial for economic exploitation and production prediction of hydrate-bearing sediments (HBSs). In this study, the clayey-silt marine sediments obtained from the South China Sea are used to remold core to investigate the effects of hydrate saturation, effective stress, pore pressure and osmotic pressure on the gas flow patterns. The results indicate that when the hydrate saturation is increased from 24.73% to 48.34%, the gas flow transitions from viscous flow to slip flow, and the gas slippage effect gets more and more pronounced with increasing hydrate saturation. The increase in effective stress leads to an increased sensitivity of gas permeability to changes in osmotic pressure, and it is more obvious at lower hydrate saturation. Elevated pore pressure leads to a small decrease in gas permeability but does not alter the flow pattern of fluid flow in the marine sediment. In addition, reducing the osmotic pressure can effectively weaken the slippage effect. Viscous flow and slip flow control the type of gas flow in HBSs, but slip flow dominates. Finally, a semi-empirical permeability model that considers the effect of hydrate saturation and effective stress on gas permeability is fitted with experimental data.

Suggested Citation

  • Wang, Haijun & Liu, Weiguo & Wu, Peng & Pan, Xuelian & You, Zeshao & Lu, Jingsheng & Li, Yanghui, 2023. "Gas recovery from marine hydrate reservoir: Experimental investigation on gas flow patterns considering pressure effect," Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008769
    DOI: 10.1016/j.energy.2023.127482
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223008769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Haijun & Wu, Peng & Li, Yanghui & Liu, Weiguo & Pan, Xuelian & Li, Qingping & He, Yufa & Song, Yongchen, 2023. "Gas permeability variation during methane hydrate dissociation by depressurization in marine sediments," Energy, Elsevier, vol. 263(PB).
    2. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    3. Luo, Tingting & Li, Yanghui & Madhusudhan, B.N. & Sun, Xiang & Song, Yongchen, 2020. "Deformation behaviors of hydrate-bearing silty sediment induced by depressurization and thermal recovery," Applied Energy, Elsevier, vol. 276(C).
    4. Sun, Xiang & Luo, Tingting & Wang, Lei & Wang, Haijun & Song, Yongchen & Li, Yanghui, 2019. "Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization," Applied Energy, Elsevier, vol. 250(C), pages 7-18.
    5. Yang, Lei & Guan, Dawei & Qu, Aoxing & Li, Qingping & Ge, Yang & Liang, Huiyong & Dong, Hongsheng & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen, 2023. "Thermotactic habit of gas hydrate growth enables a fast transformation of melting ice," Applied Energy, Elsevier, vol. 331(C).
    6. Wei, Rupeng & Xia, Yongqiang & Wang, Zifei & Li, Qingping & Lv, Xin & Leng, Shudong & Zhang, Lunxiang & Zhang, Yi & Xiao, Bo & Yang, Shengxiong & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2022. "Long-term numerical simulation of a joint production of gas hydrate and underlying shallow gas through dual horizontal wells in the South China Sea," Applied Energy, Elsevier, vol. 320(C).
    7. Christiana Figueres & Hans Joachim Schellnhuber & Gail Whiteman & Johan Rockström & Anthony Hobley & Stefan Rahmstorf, 2017. "Three years to safeguard our climate," Nature, Nature, vol. 546(7660), pages 593-595, June.
    8. Cheng, Fanbao & Wu, Zhaoran & Sun, Xiang & Shen, Shi & Wu, Peng & Liu, Weiguo & Chen, Bingbing & Liu, Xuanji & Li, Yanghui, 2023. "Compression-induced dynamic change in effective permeability of hydrate-bearing sediments during hydrate dissociation by depressurization," Energy, Elsevier, vol. 264(C).
    9. Li, Jing & Xie, Yetong & Liu, Huimin & Zhang, Xuecai & Li, Chuanhua & Zhang, Lisong, 2023. "Combining macro and micro experiments to reveal the real-time evolution of permeability of shale," Energy, Elsevier, vol. 262(PB).
    10. Wu, Peng & Li, Yanghui & Yu, Tao & Wu, Zhaoran & Huang, Lei & Wang, Haijun & Song, Yongchen, 2023. "Microstructure evolution and dynamic permeability anisotropy during hydrate dissociation in sediment under stress state," Energy, Elsevier, vol. 263(PE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Tao & Tang, Haoran & Wu, Peng & Wang, Haijun & Song, Yuanxin & Li, Yanghui, 2023. "Acoustic characteristics on clayey-silty sediments of the South China Sea during methane hydrate formation and dissociation," Energy, Elsevier, vol. 282(C).
    2. Liu, Tao & Wu, Peng & You, Zeshao & Yu, Tao & Song, Qi & Song, Yuanxin & Li, Yanghui, 2023. "Deformation characteristics on anisotropic consolidated methane hydrate clayey-silty sediments of the South China Sea under heat injection," Energy, Elsevier, vol. 280(C).
    3. Li, Yanghui & Hu, Wenkang & Tang, Haoran & Wu, Peng & Liu, Tao & You, Zeshao & Yu, Tao & Song, Yongchen, 2023. "Mechanical properties of the interstratified hydrate-bearing sediment in permafrost zones," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Tao & Wu, Peng & You, Zeshao & Yu, Tao & Song, Qi & Song, Yuanxin & Li, Yanghui, 2023. "Deformation characteristics on anisotropic consolidated methane hydrate clayey-silty sediments of the South China Sea under heat injection," Energy, Elsevier, vol. 280(C).
    2. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    3. Wei Sun & Guiwang Li & Huating Qin & Shuxia Li & Jianchun Xu, 2023. "Enhanced Gas Production from Class II Gas Hydrate Reservoirs by the Multistage Fractured Horizontal Well," Energies, MDPI, vol. 16(8), pages 1-24, April.
    4. Liu, Yanzhen & Li, Qingping & Lv, Xin & Yang, Lei & Wang, Junfeng & Qiao, Fen & Zhao, Jiafei & Qi, Huiping, 2023. "The passive effect of clay particles on natural gas hydrate kinetic inhibitors," Energy, Elsevier, vol. 267(C).
    5. Li, Yanghui & Wang, Le & Xie, Yao & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Song, Yongchen, 2023. "Deformation characteristics of methane hydrate-bearing clayey and sandy sediments during depressurization dissociation," Energy, Elsevier, vol. 275(C).
    6. Yang, Lei & Shi, Kangji & Qu, Aoxing & Liang, Huiyong & Li, Qingping & Lv, Xin & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Liu, Yu & Xiao, Bo & Yang, Shengxiong & Zhao, Jiafei & Song, Yongchen, 2023. "The locally varying thermodynamic driving force dominates the gas production efficiency from natural gas hydrate-bearing marine sediments," Energy, Elsevier, vol. 276(C).
    7. Liu, Weiguo & Song, Qi & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Li, Yanghui, 2023. "Triaxial tests on anisotropic consolidated methane hydrate-bearing clayey-silty sediments of the South China Sea," Energy, Elsevier, vol. 284(C).
    8. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    9. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    10. Yang, Mingjun & Wang, Xinru & Pang, Weixin & Li, Kehan & Yu, Tao & Chen, Bingbing & Song, Yongchen, 2023. "The inhibit behavior of fluids migration on gas hydrate re-formation in depressurized-decomposed-reservoir," Energy, Elsevier, vol. 282(C).
    11. Lin, Decai & Lu, Jingsheng & Liu, Jia & Liang, Deqing & Li, Dongliang & Jin, Guangrong & Xia, Zhiming & Li, Xiaosen, 2023. "Numerical study on natural gas hydrate production by hot water injection combined with depressurization," Energy, Elsevier, vol. 282(C).
    12. Zhao, Qi & Chen, Zhao-Yang & Li, Xiao-Sen & Xia, Zhi-Ming, 2023. "Experimental study of CO2 hydrate formation under an electrostatic field," Energy, Elsevier, vol. 272(C).
    13. Wu, Didi & Li, Shuxia & Zhang, Ningtao & Guo, Yang & Liu, Lu & Wang, Zhiqiang, 2023. "A novel permeability model for hydrate-bearing sediments integrating pore morphology evolution based on modified Kozeny-Carman equation," Energy, Elsevier, vol. 277(C).
    14. Wang, Anlun & Chen, Yinghe & Wei, Jianguang & Li, Jiangtao & Zhou, Xiaofeng, 2023. "Experimental study on the mechanism of five point pattern refracturing for vertical & horizontal wells in low permeability and tight oil reservoirs," Energy, Elsevier, vol. 272(C).
    15. Feng, Yu & Qu, Aoxing & Han, Yuze & Shi, Changrui & Liu, Yanzhen & Zhang, Lunxiang & Zhao, Jiafei & Yang, Lei & Song, Yongchen, 2023. "Effect of gas hydrate formation and dissociation on porous media structure with clay particles," Applied Energy, Elsevier, vol. 349(C).
    16. Cheng, Fanbao & Wu, Zhaoran & Sun, Xiang & Shen, Shi & Wu, Peng & Liu, Weiguo & Chen, Bingbing & Liu, Xuanji & Li, Yanghui, 2023. "Compression-induced dynamic change in effective permeability of hydrate-bearing sediments during hydrate dissociation by depressurization," Energy, Elsevier, vol. 264(C).
    17. Liang, Wei & Wang, Jianguo & Li, Peibo, 2022. "Gas production analysis for hydrate sediment with compound morphology by a new dynamic permeability model," Applied Energy, Elsevier, vol. 322(C).
    18. Luo, Tingting & Li, Yanghui & Madhusudhan, B.N. & Sun, Xiang & Song, Yongchen, 2020. "Deformation behaviors of hydrate-bearing silty sediment induced by depressurization and thermal recovery," Applied Energy, Elsevier, vol. 276(C).
    19. Chen, Bingbing & Sun, Huiru & Li, Kehan & Yu, Tao & Jiang, Lanlan & Yang, Mingjun & Song, Yongchen, 2023. "Unsaturated water flow-induced the structure variation of gas hydrate reservoir and its effect on fluid migration and gas production," Energy, Elsevier, vol. 282(C).
    20. Sun, Xian & Xiao, Peng & Wang, Xiao-Hui & Sun, Yi-Fei & Li, Xing-Xun & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Study on the influence of well closure and production pressure during dual-gas co-production from hydrate-bearing sediment containing underlying gas," Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.