IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v316y2022ics0306261922005074.html
   My bibliography  Save this article

Production of oxygen-containing fuels via supercritical methanol hydrodeoxygenation of lignin bio-oil over Cu/CuZnAlOx catalyst

Author

Listed:
  • Kong, Xiangchen
  • Liu, Chao
  • Wang, Xing
  • Fan, Yuyang
  • Xu, Weicong
  • Xiao, Rui

Abstract

Practical, economical, and high-selectivity methods of lignin bio-oil upgrading could greatly increase biorefinery productivity and profitability. Herein, we report the efficient production of oxygen-containing fuel via supercritical methanol hydrodeoxygenation (SCM-HDO) of lignin bio-oil with a well-defined Cu/CuZnAlOx catalyst. The fuel range cyclic alcohols were majorly produced from guaiacol and corncob lignin pyrolysis bio-oil with selectivity of 66.67 and 15.90% at 300 °C in 8 h, respectively, via Cu species induced hydrogenation of aromatics rings and inhibited over-deoxygenation of alcoholic hydroxyl groups. The catalyst activity decreased by 28% after five runs of bio-oil HDO due to the oxidation of Cu species and carbon deposit, where the oxidation of Cu species played the dominant role as the carbon deposit was restrained to as low as 3.64 wt% with the mild catalyst acidity. Meanwhile, the catalyst activity could be easily recovered through a calcination-reduction process to remove the carbon deposit and reactivate the Cu species. The results offered appealing opportunities for tailoring more efficient approaches for the upgrading of lignin bio-oil to alternative biofuels.

Suggested Citation

  • Kong, Xiangchen & Liu, Chao & Wang, Xing & Fan, Yuyang & Xu, Weicong & Xiao, Rui, 2022. "Production of oxygen-containing fuels via supercritical methanol hydrodeoxygenation of lignin bio-oil over Cu/CuZnAlOx catalyst," Applied Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:appene:v:316:y:2022:i:c:s0306261922005074
    DOI: 10.1016/j.apenergy.2022.119129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922005074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patil, Vivek & Adhikari, Sushil & Cross, Phillip & Jahromi, Hossein, 2020. "Progress in the solvent depolymerization of lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Herreros, J.M. & Jones, A. & Sukjit, E. & Tsolakis, A., 2014. "Blending lignin-derived oxygenate in enhanced multi-component diesel fuel for improved emissions," Applied Energy, Elsevier, vol. 116(C), pages 58-65.
    3. Li, Haowei & Ma, Hongwei & Zhao, Weijie & Li, Xuehui & Long, Jinxing, 2019. "Upgrading lignin bio-oil for oxygen-containing fuel production using Ni/MgO: Effect of the catalyst calcination temperature," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Mingqiang & Li, Hong & Wang, Yishuang & Tang, Zhiyuan & Dai, Wei & Li, Chang & Yang, Zhonglian & Wang, Jun, 2023. "Lignin depolymerization for aromatic compounds over Ni-Ce/biochar catalyst under aqueous-phase glycerol," Applied Energy, Elsevier, vol. 332(C).
    2. Hu, Lin & Guo, Xian-Hou & Wei, Xian-Yong & Liu, Fang-Jing & Xu, Mei-Ling & Liu, Tian-Long & Zhang, Feng-Bin, 2023. "Research on the influence of sequential isopropanolysis liquefaction on the composition of liquid tars and physicochemical structure evolution of renbei lignite," Energy, Elsevier, vol. 279(C).
    3. Chen, Shanshuai & Yan, Puxiang & Yu, Xiaona & Zhu, Wanbin & Wang, Hongliang, 2023. "Conversion of lignin to high yields of aromatics over Ru–ZnO/SBA-15 bifunctional catalysts," Renewable Energy, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhiwei & Li, Zaifeng & Lei, Tingzhou & Yang, Miao & Qi, Tian & Lin, Lu & Xin, Xiaofei & Ajayebi, Atta & Yang, Yantao & He, Xiaofeng & Yan, Xiaoyu, 2016. "Life cycle assessment of energy consumption and environmental emissions for cornstalk-based ethyl levulinate," Applied Energy, Elsevier, vol. 183(C), pages 170-181.
    2. Li, Haowei & Ma, Hongwei & Zhao, Weijie & Li, Xuehui & Long, Jinxing, 2019. "Upgrading lignin bio-oil for oxygen-containing fuel production using Ni/MgO: Effect of the catalyst calcination temperature," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Abraham Castro Garcia & Shuo Cheng & Jeffrey S. Cross, 2021. "Removing the Bottleneck on Wind Power Potential to Create Liquid Fuels from Locally Available Biomass," Energies, MDPI, vol. 14(12), pages 1-12, June.
    4. Radhakrishnan, Rokesh & Patra, Pradipta & Das, Manali & Ghosh, Amit, 2021. "Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable materials and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Charles A. Mullen & Candice Ellison & Yaseen Elkasabi, 2023. "Pyrolytic Conversion of Cellulosic Pulps from “Lignin-First” Biomass Fractionation," Energies, MDPI, vol. 16(7), pages 1-13, April.
    6. Chen, Mingqiang & Li, Hong & Wang, Yishuang & Tang, Zhiyuan & Dai, Wei & Li, Chang & Yang, Zhonglian & Wang, Jun, 2023. "Lignin depolymerization for aromatic compounds over Ni-Ce/biochar catalyst under aqueous-phase glycerol," Applied Energy, Elsevier, vol. 332(C).
    7. Felipe Andrade Torres & Omid Doustdar & Jose Martin Herreros & Runzhao Li & Robert Poku & Athanasios Tsolakis & Jorge Martins & Silvio A. B. Vieira de Melo, 2021. "A Comparative Study of Biofuels and Fischer–Tropsch Diesel Blends on the Engine Combustion Performance for Reducing Exhaust Gaseous and Particulate Emissions," Energies, MDPI, vol. 14(6), pages 1-19, March.
    8. Chen, Hao & Su, Xin & He, Jingjing & Zhang, Peng & Xu, Hongming & Zhou, Chenglong, 2021. "Investigation on combustion characteristics of cyclopentanol/diesel fuel blends in an optical engine," Renewable Energy, Elsevier, vol. 167(C), pages 811-829.
    9. Ouyang, Denghao & Wang, Fangqian & Hong, Jinpeng & Gao, Daihong & Zhao, Xuebing, 2021. "Ferricyanide and vanadyl (V) mediated electron transfer for converting lignin to electricity by liquid flow fuel cell with power density reaching 200 mW/cm2," Applied Energy, Elsevier, vol. 304(C).
    10. Herreros, J.M. & Schroer, K. & Sukjit, E. & Tsolakis, A., 2015. "Extending the environmental benefits of ethanol–diesel blends through DGE incorporation," Applied Energy, Elsevier, vol. 146(C), pages 335-343.
    11. Su, Ying & Guo, Bingfeng & Hornung, Ursel & Dahmen, Nicolaus, 2022. "FeCl3-supported solvothermal liquefaction of Miscanthus in methanol," Energy, Elsevier, vol. 258(C).
    12. Biswas, Bijoy & Kumar, Avnish & Krishna, Bhavya B. & Bhaskar, Thallada, 2021. "Effects of solid base catalysts on depolymerization of alkali lignin for the production of phenolic monomer compounds," Renewable Energy, Elsevier, vol. 175(C), pages 270-280.
    13. Engin Kocaturk & Tufan Salan & Orhan Ozcelik & Mehmet Hakkı Alma & Zeki Candan, 2023. "Recent Advances in Lignin-Based Biofuel Production," Energies, MDPI, vol. 16(8), pages 1-17, April.
    14. Stefano Frigo & Anna Maria Raspolli Galletti & Sara Fulignati & Domenico Licursi & Lorenzo Bertin & Gonzalo Agustin Martinez & Gianluca Pasini, 2023. "Synthesis of 1-Hexanol/Hexyl hexanoate Mixtures from Grape Pomace: Insights on Diesel Engine Performances at High Bio-Blendstock Loadings," Energies, MDPI, vol. 16(19), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:316:y:2022:i:c:s0306261922005074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.