IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v316y2022ics0306261922004494.html
   My bibliography  Save this article

Quick reaching law based global terminal sliding mode control for wind/hydrogen/battery DC microgrid

Author

Listed:
  • Armghan, Hammad
  • Yang, Ming
  • Ali, Naghmash
  • Armghan, Ammar
  • Alanazi, Abdulaziz

Abstract

Direct current (DC) microgrids are providing a pathway towards zero-carbon based future. This paper proposes a quick reaching law based global terminal sliding mode control (QRL-GTSMC) for a DC microgrid with hybrid power generation including wind, hydrogen and battery. The proposed control scheme reduces the chattering phenomenon and provides fast reaching time. Furthermore, this study discusses two-level control with system level energy management and device level QRL-GTSMC control. The proposed configuration of DC microgrid includes a complete cycle of hydrogen generation, storage and utilization, which increases the system’s complexity but improves flexibility. Firstly, the mathematical models of the wind energy system (WES), fuel cell (FC), electrolyzer, hydrogen tank and battery are developed to study their dynamical behavior. Then, the energy management strategy (EMS) and QRL-GTSMC based low-level controllers are designed. The stability of the control scheme is analyzed through Lyapunov stability criteria. After that, the effectiveness of the proposed framework is demonstrated via MATLAB simulations and compared with conventional PID and terminal sliding mode control. Finally, real-time controller hardware-in-the-loop tests based on TMS320F28379D 32-bit microcontrollers are performed. The simulation and experimental results indicate the stable performance of the DC microgrid under varying weather conditions and system uncertainties while ensuring the asymptotical stability of the whole closed-loop system.

Suggested Citation

  • Armghan, Hammad & Yang, Ming & Ali, Naghmash & Armghan, Ammar & Alanazi, Abdulaziz, 2022. "Quick reaching law based global terminal sliding mode control for wind/hydrogen/battery DC microgrid," Applied Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:appene:v:316:y:2022:i:c:s0306261922004494
    DOI: 10.1016/j.apenergy.2022.119050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922004494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Ying & Yang, Hanqing & Li, Qi & Chen, Weirong & Zare, Firuz & Guerrero, Josep M., 2020. "Mode-triggered droop method for the decentralized energy management of an islanded hybrid PV/hydrogen/battery DC microgrid," Energy, Elsevier, vol. 199(C).
    2. Napole, Cristian & Derbeli, Mohamed & Barambones, Oscar, 2021. "A global integral terminal sliding mode control based on a novel reaching law for a proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 301(C).
    3. Li, Xiangke & Dong, Chaoyu & Jiang, Wentao & Wu, Xiaohua, 2021. "An improved coordination control for a novel hybrid AC/DC microgrid architecture with combined energy storage system," Applied Energy, Elsevier, vol. 292(C).
    4. Robledo, Carla B. & Oldenbroek, Vincent & Abbruzzese, Francesca & van Wijk, Ad J.M., 2018. "Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building," Applied Energy, Elsevier, vol. 215(C), pages 615-629.
    5. Silva, S.B. & Severino, M.M. & de Oliveira, M.A.G., 2013. "A stand-alone hybrid photovoltaic, fuel cell and battery system: A case study of Tocantins, Brazil," Renewable Energy, Elsevier, vol. 57(C), pages 384-389.
    6. Bigdeli, Nooshin, 2015. "Optimal management of hybrid PV/fuel cell/battery power system: A comparison of optimal hybrid approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 377-393.
    7. Li, Jidong & Chen, Shijun & Wu, Yuqiang & Wang, Qinhui & Liu, Xing & Qi, Lijian & Lu, Xiuyuan & Gao, Lu, 2021. "How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Yuan, Minghan & Fu, Yang & Mi, Yang & Li, Zhenkun & Wang, Chengshan, 2019. "Hierarchical control of DC microgrid with dynamical load power sharing," Applied Energy, Elsevier, vol. 239(C), pages 1-11.
    9. Uzunoglu, M. & Onar, O.C. & Alam, M.S., 2009. "Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications," Renewable Energy, Elsevier, vol. 34(3), pages 509-520.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Pierro, Marco & Moser, David & Nižetić, Sandro & Karimi, Nader & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Building integrated photovoltaic/thermal technologies in Middle Eastern and North African countries: Current trends and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Achraf Saadaoui & Mohammed Ouassaid & Mohamed Maaroufi, 2023. "Overview of Integration of Power Electronic Topologies and Advanced Control Techniques of Ultra-Fast EV Charging Stations in Standalone Microgrids," Energies, MDPI, vol. 16(3), pages 1-21, January.
    3. Dhanasekaran Boopathi & Kaliannan Jagatheesan & Baskaran Anand & Sourav Samanta & Nilanjan Dey, 2023. "Frequency Regulation of Interlinked Microgrid System Using Mayfly Algorithm-Based PID Controller," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    4. Tushar Kanti Roy & Amanullah Maung Than Oo & Subarto Kumar Ghosh, 2024. "Designing a High-Order Sliding Mode Controller for Photovoltaic- and Battery Energy Storage System-Based DC Microgrids with ANN-MPPT," Energies, MDPI, vol. 17(2), pages 1-22, January.
    5. Hartani, Mohamed Amine & Rezk, Hegazy & Benhammou, Aissa & Hamouda, Messaoud & Abdelkhalek, Othmane & Mekhilef, Saad & Olabi, A.G., 2023. "Proposed frequency decoupling-based fuzzy logic control for power allocation and state-of-charge recovery of hybrid energy storage systems adopting multi-level energy management for multi-DC-microgrid," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Hang & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jia, Youwei & Jian, Linni, 2022. "Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Yu, Hang & Niu, Songyan & Zhang, Yumeng & Jian, Linni, 2020. "An integrated and reconfigurable hybrid AC/DC microgrid architecture with autonomous power flow control for nearly/net zero energy buildings," Applied Energy, Elsevier, vol. 263(C).
    3. Zhang, Yang & Campana, Pietro Elia & Lundblad, Anders & Yan, Jinyue, 2017. "Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation," Applied Energy, Elsevier, vol. 201(C), pages 397-411.
    4. Abulanwar, Sayed & Ghanem, Abdelhady & Rizk, Mohammad E.M. & Hu, Weihao, 2021. "Adaptive synergistic control strategy for a hybrid AC/DC microgrid during normal operation and contingencies," Applied Energy, Elsevier, vol. 304(C).
    5. Zhou, Yuekuan, 2022. "Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Hemmati, Reza & Saboori, Hedayat, 2016. "Emergence of hybrid energy storage systems in renewable energy and transport applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 11-23.
    7. Rouholamini, Mehdi & Mohammadian, Mohsen, 2016. "Heuristic-based power management of a grid-connected hybrid energy system combined with hydrogen storage," Renewable Energy, Elsevier, vol. 96(PA), pages 354-365.
    8. Li, Xiangke & Wang, Minghao & Dong, Chaoyu & Jiang, Wentao & Xu, Zhao & Wu, Xiaohua & Jia, Hongjie, 2023. "A robust autonomous sliding-mode control of renewable DC microgrids for decentralized power sharing considering large-signal stability," Applied Energy, Elsevier, vol. 339(C).
    9. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    10. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    11. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    12. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    13. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    14. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    15. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    16. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    17. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    18. Nayeripour, Majid & Hoseintabar, Mohammad & Niknam, Taher, 2011. "Frequency deviation control by coordination control of FC and double-layer capacitor in an autonomous hybrid renewable energy power generation system," Renewable Energy, Elsevier, vol. 36(6), pages 1741-1746.
    19. Li, Feng & Yuan, Yupeng & Yan, Xinping & Malekian, Reza & Li, Zhixiong, 2018. "A study on a numerical simulation of the leakage and diffusion of hydrogen in a fuel cell ship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 177-185.
    20. Wen, Shuli & Lan, Hai & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun & Cheng, Peng, 2016. "Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system," Applied Energy, Elsevier, vol. 175(C), pages 158-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:316:y:2022:i:c:s0306261922004494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.