IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p532-d1323933.html
   My bibliography  Save this article

Designing a High-Order Sliding Mode Controller for Photovoltaic- and Battery Energy Storage System-Based DC Microgrids with ANN-MPPT

Author

Listed:
  • Tushar Kanti Roy

    (School of Engineering, Deakin University, Melbourne, VIC 3216, Australia)

  • Amanullah Maung Than Oo

    (School of Engineering, Macquarie University, Sydney, NSW 2109, Australia)

  • Subarto Kumar Ghosh

    (Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh)

Abstract

This paper introduces a robust proportional integral derivative higher-order sliding mode controller (PID-HOSMC) based on a double power reaching law (DPRL) to enhance large-signal stability in DC microgrids. The microgrid integrates a solar photovoltaic (SPV) system, an energy storage system (ESS), and DC loads. Efficient DC-DC converters, including bidirectional and boost converters, are employed to maintain a constant voltage level despite the lower SPV output power. An artificial neural network (ANN) generates the optimal reference voltage for the SPV system. The dynamical model, which incorporates external disturbances, is initially developed and based on this model, and the PID-HOSMC is designed to control output power by generating switching gate pulses. Afterwards, Lyapunov stability theory is used to demonstrate the model’s closed-loop stability, and theoretical analysis indicates that the controller can converge tracking errors to zero within a finite time frame. Finally, a comparative numerical simulation result is presented, demonstrating that the proposed controller exhibits a 58% improvement in settling time and an 82% improvement in overshoot compared to the existing controller. Experimental validation using processor-in-the-loop (PIL) confirms the proposed controller’s performance on a real-time platform.

Suggested Citation

  • Tushar Kanti Roy & Amanullah Maung Than Oo & Subarto Kumar Ghosh, 2024. "Designing a High-Order Sliding Mode Controller for Photovoltaic- and Battery Energy Storage System-Based DC Microgrids with ANN-MPPT," Energies, MDPI, vol. 17(2), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:532-:d:1323933
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/532/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/532/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Armghan, Hammad & Yang, Ming & Ali, Naghmash & Armghan, Ammar & Alanazi, Abdulaziz, 2022. "Quick reaching law based global terminal sliding mode control for wind/hydrogen/battery DC microgrid," Applied Energy, Elsevier, vol. 316(C).
    2. Zhiye Lu & Lishu Wang & Panbao Wang, 2023. "Review of Voltage Control Strategies for DC Microgrids," Energies, MDPI, vol. 16(17), pages 1-19, August.
    3. Sabrina Yeasmin & Tushar Kanti Roy & Subarto Kumar Ghosh, 2022. "Design of Robust Integral Terminal Sliding Mode Controllers with Exponential Reaching Laws for Solar PV and BESS-Based DC Microgrids with Uncertainties," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    4. Taimoor Ahmad Khan & Amjad Ullah & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Faheem Ali & Sajjad Ali & Sheraz Khan & Khalid Rehman, 2022. "A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.
    5. Jonathan Andrés Basantes & Daniela Estefanía Paredes & Jacqueline Rosario Llanos & Diego Edmundo Ortiz & Claudio Danilo Burgos, 2023. "Energy Management System (EMS) Based on Model Predictive Control (MPC) for an Isolated DC Microgrid," Energies, MDPI, vol. 16(6), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Achraf Saadaoui & Mohammed Ouassaid & Mohamed Maaroufi, 2023. "Overview of Integration of Power Electronic Topologies and Advanced Control Techniques of Ultra-Fast EV Charging Stations in Standalone Microgrids," Energies, MDPI, vol. 16(3), pages 1-21, January.
    2. T. K. Bashishtha & V. P. Singh & U. K. Yadav & T. Varshney, 2024. "Reaction Curve-Assisted Rule-Based PID Control Design for Islanded Microgrid," Energies, MDPI, vol. 17(5), pages 1-19, February.
    3. Naamane Debdouche & Brahim Deffaf & Habib Benbouhenni & Zarour Laid & Mohamed I. Mosaad, 2023. "Direct Power Control for Three-Level Multifunctional Voltage Source Inverter of PV Systems Using a Simplified Super-Twisting Algorithm," Energies, MDPI, vol. 16(10), pages 1-32, May.
    4. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Pierro, Marco & Moser, David & Nižetić, Sandro & Karimi, Nader & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Building integrated photovoltaic/thermal technologies in Middle Eastern and North African countries: Current trends and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Dhanasekaran Boopathi & Kaliannan Jagatheesan & Baskaran Anand & Sourav Samanta & Nilanjan Dey, 2023. "Frequency Regulation of Interlinked Microgrid System Using Mayfly Algorithm-Based PID Controller," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    6. Escobar, Eros D. & Betancur, Daniel & Manrique, Tatiana & Isaac, Idi A., 2023. "Model predictive real-time architecture for secondary voltage control of microgrids," Applied Energy, Elsevier, vol. 345(C).
    7. Hartani, Mohamed Amine & Rezk, Hegazy & Benhammou, Aissa & Hamouda, Messaoud & Abdelkhalek, Othmane & Mekhilef, Saad & Olabi, A.G., 2023. "Proposed frequency decoupling-based fuzzy logic control for power allocation and state-of-charge recovery of hybrid energy storage systems adopting multi-level energy management for multi-DC-microgrid," Energy, Elsevier, vol. 278(C).
    8. Marvin Lema & Wilson Pavon & Leony Ortiz & Ama Baduba Asiedu-Asante & Silvio Simani, 2022. "Controller Coordination Strategy for DC Microgrid Using Distributed Predictive Control Improving Voltage Stability," Energies, MDPI, vol. 15(15), pages 1-15, July.
    9. Ahmed Rashwan & Alexey Mikhaylov & Tomonobu Senjyu & Mahdiyeh Eslami & Ashraf M. Hemeida & Dina S. M. Osheba, 2023. "Modified Droop Control for Microgrid Power-Sharing Stability Improvement," Sustainability, MDPI, vol. 15(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:532-:d:1323933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.