IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v307y2022ics0306261921013520.html
   My bibliography  Save this article

Life cycle assessment of floating offshore wind farms: An evaluation of operation and maintenance

Author

Listed:
  • Garcia-Teruel, Anna
  • Rinaldi, Giovanni
  • Thies, Philipp R.
  • Johanning, Lars
  • Jeffrey, Henry

Abstract

One of the key objectives for renewable energy technologies is to reduce the environmental impact of energy generation. Floating offshore wind technologies have been developed in recent years to exploit the wind energy resource available at deep waters where bottom-fixed technologies are not economical. However, few studies exist that analyse the environmental impact of such technologies. Particularly, offshore activities such as those required for Operation and Maintenance (O&M) are not represented in detail in previous studies. The present study addresses these gaps by performing a Life Cycle Assessment using an advanced O&M model to quantify the environmental impact of a floating offshore wind farm. Different O&M philosophies – assuming towing to shore for major operations vs. performing all operations on site – and their impact are evaluated and discussed for two case studies inspired by real pilot park deployments. The results show mean Global Warming Potential (GWP) values between 25.6 and 45.2 gCO2 eq/kWh depending on the assumed O&M strategy and vessels, with the contribution of the O&M phase to GWP ranging from 21 to 49%, and of O&M vessels from 6 to 40%. Assuming O&M strategies to be the same for fixed and floating offshore wind could result in a 20.4% underestimate of GWP, whereas the vessel choice resulted in up to 34.8% difference in the estimated GWP. An environmental impact perspective provides key insights on the choice of different designs, operation strategies and asset management, and thus should be used in the decision-making process.

Suggested Citation

  • Garcia-Teruel, Anna & Rinaldi, Giovanni & Thies, Philipp R. & Johanning, Lars & Jeffrey, Henry, 2022. "Life cycle assessment of floating offshore wind farms: An evaluation of operation and maintenance," Applied Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921013520
    DOI: 10.1016/j.apenergy.2021.118067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921013520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    2. Huang, Yu-Fong & Gan, Xing-Jia & Chiueh, Pei-Te, 2017. "Life cycle assessment and net energy analysis of offshore wind power systems," Renewable Energy, Elsevier, vol. 102(PA), pages 98-106.
    3. Raadal, Hanne Lerche & Vold, Bjørn Ivar & Myhr, Anders & Nygaard, Tor Anders, 2014. "GHG emissions and energy performance of offshore wind power," Renewable Energy, Elsevier, vol. 66(C), pages 314-324.
    4. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    5. Reimers, Britta & Özdirik, Burcu & Kaltschmitt, Martin, 2014. "Greenhouse gas emissions from electricity generated by offshore wind farms," Renewable Energy, Elsevier, vol. 72(C), pages 428-438.
    6. Myhr, Anders & Bjerkseter, Catho & Ågotnes, Anders & Nygaard, Tor A., 2014. "Levelised cost of energy for offshore floating wind turbines in a life cycle perspective," Renewable Energy, Elsevier, vol. 66(C), pages 714-728.
    7. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    8. Rinaldi, Giovanni & Garcia-Teruel, Anna & Jeffrey, Henry & Thies, Philipp R. & Johanning, Lars, 2021. "Incorporating stochastic operation and maintenance models into the techno-economic analysis of floating offshore wind farms," Applied Energy, Elsevier, vol. 301(C).
    9. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    10. Nian, Victor & Liu, Yang & Zhong, Sheng, 2019. "Life cycle cost-benefit analysis of offshore wind energy under the climatic conditions in Southeast Asia – Setting the bottom-line for deployment," Applied Energy, Elsevier, vol. 233, pages 1003-1014.
    11. Rashedi, A. & Sridhar, I. & Tseng, K.J., 2013. "Life cycle assessment of 50MW wind firms and strategies for impact reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 89-101.
    12. Giovanni Rinaldi, 2020. "Offshore Renewable Energy," Chapters, in: Mansour Al Qubeissi & Ahmad El-Kharouf & Hakan Serhad Soyhan (ed.), Renewable Energy - Resources, Challenges and Applications, IntechOpen.
    13. Kang, Jichuan & Sun, Liping & Guedes Soares, C., 2019. "Fault Tree Analysis of floating offshore wind turbines," Renewable Energy, Elsevier, vol. 133(C), pages 1455-1467.
    14. Wagner, Hermann-Josef & Baack, Christoph & Eickelkamp, Timo & Epe, Alexa & Lohmann, Jessica & Troy, Stefanie, 2011. "Life cycle assessment of the offshore wind farm alpha ventus," Energy, Elsevier, vol. 36(5), pages 2459-2464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iain A. Struthers & Nadezda Avanessova & Anthony Gray & Miriam Noonan & R. Camilla Thomson & Gareth P. Harrison, 2023. "Life Cycle Assessment of Four Floating Wind Farms around Scotland Using a Site-Specific Operation and Maintenance Model with SOVs," Energies, MDPI, vol. 16(23), pages 1-24, November.
    2. Han Peng & Songyin Li & Linjian Shangguan & Yisa Fan & Hai Zhang, 2023. "Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    3. Zhu, Zimo & Zhang, Jian & Zhu, Songye & Yang, Jun, 2023. "Digital twin technology for wind turbine towers based on joint load–response estimation: A laboratory experimental study," Applied Energy, Elsevier, vol. 352(C).
    4. Pennock, Shona & Vanegas-Cantarero, María M. & Bloise-Thomaz, Tianna & Jeffrey, Henry & Dickson, Matthew J., 2022. "Life cycle assessment of a point-absorber wave energy array," Renewable Energy, Elsevier, vol. 190(C), pages 1078-1088.
    5. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    6. Mahmoud G. Hemeida & Ashraf M. Hemeida & Tomonobu Senjyu & Dina Osheba, 2022. "Renewable Energy Resources Technologies and Life Cycle Assessment: Review," Energies, MDPI, vol. 15(24), pages 1-36, December.
    7. Giambattista Guidi & Anna Carmela Violante & Simona De Iuliis, 2023. "Environmental Impact of Electricity Generation Technologies: A Comparison between Conventional, Nuclear, and Renewable Technologies," Energies, MDPI, vol. 16(23), pages 1-33, November.
    8. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    9. Hailun Xie & Lars Johanning, 2023. "A Hierarchical Met-Ocean Data Selection Model for Fast O&M Simulation in Offshore Renewable Energy Systems," Energies, MDPI, vol. 16(3), pages 1-20, February.
    10. Safder, Usman & Tariq, Shahzeb & Yoo, ChangKyoo, 2022. "Multilevel optimization framework to support self-sustainability of industrial processes for energy/material recovery using circular integration concept," Applied Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rueda-Bayona, Juan Gabriel & Cabello Eras, Juan Jose & Chaparro, Tatiana R., 2022. "Impacts generated by the materials used in offshore wind technology on Human Health, Natural Environment and Resources," Energy, Elsevier, vol. 261(PA).
    2. Yashuang Feng & Lixiao Zhang, 2023. "The GHG Intensities of Wind Power Plants in China from a Life-Cycle Perspective: The Impacts of Geographical Location, Turbine Technology and Management Level," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    3. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    4. Summerfield-Ryan, Oliver & Park, Susan, 2023. "The power of wind: The global wind energy industry's successes and failures," Ecological Economics, Elsevier, vol. 210(C).
    5. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    6. Kaldellis, J.K. & Apostolou, D., 2017. "Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart," Renewable Energy, Elsevier, vol. 108(C), pages 72-84.
    7. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    8. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Nurullah Yildiz & Hassan Hemida & Charalampos Baniotopoulos, 2021. "Life Cycle Assessment of a Barge-Type Floating Wind Turbine and Comparison with Other Types of Wind Turbines," Energies, MDPI, vol. 14(18), pages 1-19, September.
    10. Mohamed R. Gomaa & Hegazy Rezk & Ramadan J. Mustafa & Mujahed Al-Dhaifallah, 2019. "Evaluating the Environmental Impacts and Energy Performance of a Wind Farm System Utilizing the Life-Cycle Assessment Method: A Practical Case Study," Energies, MDPI, vol. 12(17), pages 1-25, August.
    11. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    12. Louise Christine Dammeier & Joyce H. C. Bosmans & Mark A. J. Huijbregts, 2023. "Variability in greenhouse gas footprints of the global wind farm fleet," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 272-282, February.
    13. Rinaldi, Giovanni & Garcia-Teruel, Anna & Jeffrey, Henry & Thies, Philipp R. & Johanning, Lars, 2021. "Incorporating stochastic operation and maintenance models into the techno-economic analysis of floating offshore wind farms," Applied Energy, Elsevier, vol. 301(C).
    14. Jesuina Chipindula & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Raghava Rao Kommalapati & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Onshore and Offshore Wind Farms in Texas," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    15. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    16. Moussavi, S. & Barutha, P. & Dvorak, B., 2023. "Environmental life cycle assessment of a novel offshore wind energy design project: A United States based case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    17. Ferreira, Victor J. & Benveniste, Gabriela & Rapha, José I. & Corchero, Cristina & Domínguez-García, Jose Luis, 2023. "A holistic tool to assess the cost and environmental performance of floating offshore wind farms," Renewable Energy, Elsevier, vol. 216(C).
    18. Andreas von Döllen & YoungSeok Hwang & Stephan Schlüter, 2021. "The Future Is Colorful—An Analysis of the CO 2 Bow Wave and Why Green Hydrogen Cannot Do It Alone," Energies, MDPI, vol. 14(18), pages 1-20, September.
    19. Judge, Frances & McAuliffe, Fiona Devoy & Sperstad, Iver Bakken & Chester, Rachel & Flannery, Brian & Lynch, Katie & Murphy, Jimmy, 2019. "A lifecycle financial analysis model for offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 370-383.
    20. Brooks, Sam & Mahmood, Minhal & Roy, Rajkumar & Manolesos, Marinos & Salonitis, Konstantinos, 2023. "Self-reconfiguration simulations of turbines to reduce uneven farm degradation," Renewable Energy, Elsevier, vol. 206(C), pages 1301-1314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921013520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.