IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v305y2022ics0306261921012083.html
   My bibliography  Save this article

Investigation of proton exchange membrane fuel cell stack with inversely phased wavy flow field design

Author

Listed:
  • Yin, Cong
  • Song, Yating
  • Liu, Meiru
  • Gao, Yan
  • Li, Kai
  • Qiao, Zemin
  • Tang, Hao

Abstract

The proton exchange membrane fuel cell stack based on metallic bipolar plate is promising in fuel cell vehicle applications due to its compact design and high power density. As the flow field design is critical to the fuel cell performance, in this work, the novel wavy flow fields designed in metallic bipolar plate with inverse phase for anode and cathode are investigated by both experiment and simulation. Validated by the test of 5-cell short stack with 315 cm2 active area, a three-dimensional non-isothermal model is developed to investigate the multi-physical processes and internal parameter uniformities of the presented stack design. The in-plane parameter distributions of current density, water content and reactant concentrations basically follow the cathode wavy flow field geometry rather than the anode one, while the temperature distribution presents multiple elliptical island shaped patterns according to the intercrossed wavy flow fields. The two-layered intercrossed wavy coolant channels enhance the thermal convection of the coolant which induces interlaminar secondary flow with 25% velocity magnitude of the primary one. The findings of this work are beneficial to understand the internal behavior of the fuel cell stack and optimize the flow field design for enhanced performance and heat dissipation capability.

Suggested Citation

  • Yin, Cong & Song, Yating & Liu, Meiru & Gao, Yan & Li, Kai & Qiao, Zemin & Tang, Hao, 2022. "Investigation of proton exchange membrane fuel cell stack with inversely phased wavy flow field design," Applied Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921012083
    DOI: 10.1016/j.apenergy.2021.117893
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921012083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Cong & Gao, Yan & Li, Ting & Xie, Guangyou & Li, Kai & Tang, Hao, 2020. "Study of internal multi-parameter distributions of proton exchange membrane fuel cell with segmented cell device and coupled three-dimensional model," Renewable Energy, Elsevier, vol. 147(P1), pages 650-662.
    2. Chu, Tiankuo & Zhang, Ruofan & Wang, Yanbo & Ou, Mingyang & Xie, Meng & Shao, Hangyu & Yang, Daijun & Li, Bing & Ming, Pingwen & Zhang, Cunman, 2021. "Performance degradation and process engineering of the 10 kW proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 219(C).
    3. Wilberforce, Tabbi & El Hassan, Zaki & Ogungbemi, Emmanuel & Ijaodola, O. & Khatib, F.N. & Durrant, A. & Thompson, J. & Baroutaji, A. & Olabi, A.G., 2019. "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 236-260.
    4. Guerrero Moreno, Nayibe & Cisneros Molina, Myriam & Gervasio, Dominic & Pérez Robles, Juan Francisco, 2015. "Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 897-906.
    5. Mahdavi, Arash & Ranjbar, Ali Akbar & Gorji, Mofid & Rahimi-Esbo, Mazaher, 2018. "Numerical simulation based design for an innovative PEMFC cooling flow field with metallic bipolar plates," Applied Energy, Elsevier, vol. 228(C), pages 656-666.
    6. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    7. Arun Saco, S. & Thundil Karuppa Raj, R. & Karthikeyan, P., 2016. "A study on scaled up proton exchange membrane fuel cell with various flow channels for optimizing power output by effective water management using numerical technique," Energy, Elsevier, vol. 113(C), pages 558-573.
    8. Dong, Pengcheng & Xie, Gongnan & Ni, Meng, 2021. "Improved energy performance of a PEM fuel cell by introducing discontinuous S-shaped and crescent ribs into flowing channels," Energy, Elsevier, vol. 222(C).
    9. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yu & Chen, Ben & Meng, Kai & Zhou, Haoran & Chen, Wenshang & Zhang, Ning & Deng, Qihao & Yang, Guanghua & Tu, Zhengkai, 2023. "Optimal design of a cathode flow field for performance enhancement of PEM fuel cell," Applied Energy, Elsevier, vol. 343(C).
    2. Robert Nebeluk & Maciej Ławryńczuk, 2022. "Fast Model Predictive Control of PEM Fuel Cell System Using the L 1 Norm," Energies, MDPI, vol. 15(14), pages 1-17, July.
    3. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Yin, Cong & Cao, Jishen & Tang, Qilin & Su, Yanghuai & Wang, Renkang & Li, Kai & Tang, Hao, 2022. "Study of internal performance of commercial-size fuel cell stack with 3D multi-physical model and high resolution current mapping," Applied Energy, Elsevier, vol. 323(C).
    5. Gong, Zhichao & Wang, Bowen & Xu, Yifan & Ni, Meng & Gao, Qingchen & Hou, Zhongjun & Cai, Jun & Gu, Xin & Yuan, Xinjie & Jiao, Kui, 2022. "Adaptive optimization strategy of air supply for automotive polymer electrolyte membrane fuel cell in life cycle," Applied Energy, Elsevier, vol. 325(C).
    6. Rahmani, Ebrahim & Moradi, Tofigh & Ghandehariun, Samane & Naterer, Greg F. & Ranjbar, Amirhossein, 2023. "Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field," Energy, Elsevier, vol. 264(C).
    7. Huang, Haozhong & Liu, Mingxin & Li, Xuan & Guo, Xiaoyu & Wang, Tongying & Li, Songwei & Lei, Han, 2022. "Numerical simulation and visualization study of a new tapered-slope serpentine flow field in proton exchange membrane fuel cell," Energy, Elsevier, vol. 246(C).
    8. Hu, Haowen & Ou, Kai & Yuan, Wei-Wei, 2023. "Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system," Energy, Elsevier, vol. 284(C).
    9. Yin, Cong & Yang, Haiyu & Liu, Yu & Wen, Xuhui & Xie, Guangyou & Wang, Renkang & Tang, Hao, 2023. "Numerical and experimental investigations on internal humidifying designs for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 348(C).
    10. Fan, Lixin & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Technological and Engineering design of a megawatt proton exchange membrane fuel cell system," Energy, Elsevier, vol. 257(C).
    11. Huang, Ying & Song, Jiangnan & Deng, Xinyue & Chen, Su & Zhang, Xiang & Ma, Zongpeng & Chen, Lunjun & Wu, Yanli, 2023. "Numerical investigation of baffle shape effects on performance and mass transfer of proton exchange membrane fuel cell," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giacoppo, Giosuè & Hovland, Scott & Barbera, Orazio, 2019. "2 kW Modular PEM fuel cell stack for space applications: Development and test for operation under relevant conditions," Applied Energy, Elsevier, vol. 242(C), pages 1683-1696.
    2. Yin, Cong & Yang, Haiyu & Liu, Yu & Wen, Xuhui & Xie, Guangyou & Wang, Renkang & Tang, Hao, 2023. "Numerical and experimental investigations on internal humidifying designs for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 348(C).
    3. Saadat, Nazmus & Dhakal, Hom N. & Tjong, Jimi & Jaffer, Shaffiq & Yang, Weimin & Sain, Mohini, 2021. "Recent advances and future perspectives of carbon materials for fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    5. Luka Mihanović & Željko Penga & Lei Xing & Viktor Hacker, 2021. "Combining Baffles and Secondary Porous Layers for Performance Enhancement of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(12), pages 1-28, June.
    6. Zijun Li & Jianguo Wang & Shubo Wang & Weiwei Li & Xiaofeng Xie, 2023. "Liquid Water Transport Characteristics and Droplet Dynamics of Proton Exchange Membrane Fuel Cells with 3D Wave Channel," Energies, MDPI, vol. 16(16), pages 1-19, August.
    7. Chu, Tiankuo & Tang, Qianwen & Wang, Qinpu & Wang, Yanbo & Du, Hong & Guo, YuQing & Li, Bing & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2023. "Experimental study on the effect of flow channel parameters on the durability of PEMFC stack and analysis of hydrogen crossover mechanism," Energy, Elsevier, vol. 264(C).
    8. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    9. Gong, Fan & Yang, Xiaolong & Zhang, Xun & Mao, Zongqiang & Gao, Weitao & Wang, Cheng, 2023. "The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 329(C).
    10. Rahmani, Ebrahim & Moradi, Tofigh & Ghandehariun, Samane & Naterer, Greg F. & Ranjbar, Amirhossein, 2023. "Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field," Energy, Elsevier, vol. 264(C).
    11. Yin, Cong & Gao, Yan & Li, Ting & Xie, Guangyou & Li, Kai & Tang, Hao, 2020. "Study of internal multi-parameter distributions of proton exchange membrane fuel cell with segmented cell device and coupled three-dimensional model," Renewable Energy, Elsevier, vol. 147(P1), pages 650-662.
    12. Hou, Yuze & Deng, Hao & Pan, Fengwen & Chen, Wenmiao & Du, Qing & Jiao, Kui, 2019. "Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
    14. Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
    15. Cai, Genchun & Liang, Yunmin & Liu, Zhichun & Liu, Wei, 2020. "Design and optimization of bio-inspired wave-like channel for a PEM fuel cell applying genetic algorithm," Energy, Elsevier, vol. 192(C).
    16. Zhou, Yu & Chen, Ben & Chen, Wenshang & Deng, Qihao & Shen, Jun & Tu, Zhengkai, 2022. "A novel opposite sinusoidal wave flow channel for performance enhancement of proton exchange membrane fuel cell," Energy, Elsevier, vol. 261(PB).
    17. Lin, Rui & Diao, Xiaoyu & Ma, Tiancai & Tang, Shenghao & Chen, Liang & Liu, Dengcheng, 2019. "Optimized microporous layer for improving polymer exchange membrane fuel cell performance using orthogonal test design," Applied Energy, Elsevier, vol. 254(C).
    18. Qaisar Abbas & Mojtaba Mirzaeian & Michael R.C. Hunt & Peter Hall & Rizwan Raza, 2020. "Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems," Energies, MDPI, vol. 13(21), pages 1-41, November.
    19. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
    20. Yin, Yan & Wu, Shiyu & Qin, Yanzhou & Otoo, Obed Nenyi & Zhang, Junfeng, 2020. "Quantitative analysis of trapezoid baffle block sloping angles on oxygen transport and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921012083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.