IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v301y2021ics0306261921008576.html
   My bibliography  Save this article

Unraveling enhanced activity and coke resistance of Pt-based catalyst in bio-aviation fuel refining

Author

Listed:
  • Yang, Huiru
  • Du, Xiangze
  • Lei, Xiaomei
  • Zhou, Keyao
  • Tian, Yunfei
  • Li, Dan
  • Hu, Changwei

Abstract

Carbon deposition seriously affects the stability of catalyst, which restricts the industrialization of the one-step process for refining bio-aviation fuel. Pt supported on 50%SAPO-11-50%γ-Al2O3 composite carrier was designed and synthesized, which presented enhanced coke resistance. The bio-aviation fuel with similar properties to the commercial jet fuel was obtained with a high yield of 63.5%. A series of characterization methods (including TG, XRD, H2-TPR, NH3-TPD, Py-IR, XPS, TEM and CO-pulse chemisorption) were utilized to reveal the structure characteristics of catalysts. TEM and CO-pulse chemisorption analysis indicates that the composite carrier is favorable for the dispersion of Pt with small active particles generated. The results from XPS, XRD and H2-TPR shows that the different ratios of Pt0/Pt4+ are generated due to the different interaction between Pt species and carriers. Py-IR results display that the composite carrier provides proper amount of Brønsted acid and Lewisacid sites correlated with the high bio-aviation fuel yield and enhanced coke resistance. The metallic platinum (Pt0) promotes the formation of Brønsted acid sites on catalysts, where excesses Brønsted acid sites causing the olefin polymerization, and inducing the formation of carbon deposition. The study offers an effective strategy to design the catalyst with excellent coke resistance by composite carrier effect toward refining bio-aviation fuel.

Suggested Citation

  • Yang, Huiru & Du, Xiangze & Lei, Xiaomei & Zhou, Keyao & Tian, Yunfei & Li, Dan & Hu, Changwei, 2021. "Unraveling enhanced activity and coke resistance of Pt-based catalyst in bio-aviation fuel refining," Applied Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008576
    DOI: 10.1016/j.apenergy.2021.117469
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921008576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Qihang & Cao, Yang & Li, Jin, 2020. "Prepared multifunctional catalyst Ni2P/Zr-SBA-15 and catalyzed Jatropha Oil to produce bio-aviation fuel," Renewable Energy, Elsevier, vol. 150(C), pages 370-381.
    2. Li, Xingyong & Chen, Yubao & Hao, Yajie & Zhang, Xu & Du, Junchen & Zhang, Aimin, 2019. "Optimization of aviation kerosene from one-step hydrotreatment of catalytic Jatropha oil over SDBS-Pt/SAPO-11 by response surface methodology," Renewable Energy, Elsevier, vol. 139(C), pages 551-559.
    3. Zhang, Yajing & Bi, Peiyan & Wang, Jicong & Jiang, Peiwen & Wu, Xiaoping & Xue, He & Liu, Junxu & Zhou, Xiaoguo & Li, Quanxin, 2015. "Production of jet and diesel biofuels from renewable lignocellulosic biomass," Applied Energy, Elsevier, vol. 150(C), pages 128-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verma, Vikas & Mishra, Ankit & Anand, Mohit & Farooqui, Saleem Akhtar & Sinha, Anil Kumar, 2022. "Catalytic hydrocracking of inedible palm stearin for the production of drop-in aviation fuel and comparison with other inedible oils," Renewable Energy, Elsevier, vol. 199(C), pages 1440-1450.
    2. Gómez-Castro, F.I. & Gutiérrez-Antonio, C. & Romero-Izquierdo, A.G. & May-Vázquez, M.M. & Hernández, S., 2023. "Intensified technologies for the production of triglyceride-based biofuels: Current status and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Li, Shiliang & Li, Yanqi & Wu, Jun & Wang, Zheng & Wang, Fang & Deng, Li & Nie, Kaili, 2020. "Synthesis of low pour point bio-aviation fuel from renewable abietic acid," Renewable Energy, Elsevier, vol. 155(C), pages 1042-1050.
    4. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "Direct conversion of glyceride-based oil into renewable jet fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Long, Feng & Zhai, Qiaolong & Liu, Peng & Cao, Xincheng & Jiang, Xia & Wang, Fei & Wei, Linshan & Liu, Chao & Jiang, Jianchun & Xu, Junming, 2020. "Catalytic conversion of triglycerides by metal-based catalysts and subsequent modification of molecular structure by ZSM-5 and Raney Ni for the production of high-value biofuel," Renewable Energy, Elsevier, vol. 157(C), pages 1072-1080.
    9. de Souza, Lorena Mendes & Mendes, Pietro A.S. & Aranda, Donato A.G., 2020. "Oleaginous feedstocks for hydro-processed esters and fatty acids (HEFA) biojet production in southeastern Brazil: A multi-criteria decision analysis," Renewable Energy, Elsevier, vol. 149(C), pages 1339-1351.
    10. Li, Xingyong & Wu, Yankun & Wang, Qi & Li, Shuirong & Ye, Yueyuan & Wang, Dechao & Zheng, Zhifeng, 2022. "Effect of preparation method of NiMo/γ-Al2O3 on the FAME hydrotreatment to produce C15–C18 alkanes," Renewable Energy, Elsevier, vol. 193(C), pages 1-12.
    11. Radhakrishnan, Rokesh & Patra, Pradipta & Das, Manali & Ghosh, Amit, 2021. "Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable materials and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Jiang, Shengjuan & Hu, Xun & Xia, Daohong & Li, Chun-Zhu, 2016. "Formation of aromatic ring structures during the thermal treatment of mallee wood cylinders at low temperature," Applied Energy, Elsevier, vol. 183(C), pages 542-551.
    13. Zhang, Xinghua & Tang, Wenwu & Zhang, Qi & Wang, Tiejun & Ma, Longlong, 2018. "Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts," Applied Energy, Elsevier, vol. 227(C), pages 73-79.
    14. Zheng, Yunwu & Wang, Jida & Liu, Can & Lu, Yi & Lin, Xu & Li, Wenbin & Zheng, Zhifeng, 2020. "Efficient and stable Ni-Cu catalysts for ex situ catalytic pyrolysis vapor upgrading of oleic acid into hydrocarbon: Effect of catalyst support, process parameters and Ni-to-Cu mixed ratio," Renewable Energy, Elsevier, vol. 154(C), pages 797-812.
    15. Qiu, Rui & Xu, Jiuping & Zeng, Ziqiang & Chen, Xin & Wang, Yinhai, 2022. "Carbon tax policy-induced air travel carbon emission reduction and biofuel usage in China," Journal of Air Transport Management, Elsevier, vol. 103(C).
    16. Zhang, Xuesong & Lei, Hanwu & Zhu, Lei & Qian, Moriko & Zhu, Xiaolu & Wu, Joan & Chen, Shulin, 2016. "Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions," Applied Energy, Elsevier, vol. 173(C), pages 418-430.
    17. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    18. Moon, Myounghoon & Park, Won-Kun & Lee, Soo Youn & Hwang, Kyung-Ran & Lee, Sangmin & Kim, Min-Sik & Kim, Bolam & Oh, You-Kwan & Lee, Jin-Suk, 2022. "Utilization of whole microalgal biomass for advanced biofuel and biorefinery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Hu, Liangdong & Ma, Longlong & Hu, Guangzhi & Zhang, Wenjie & Liu, Ying & Xu, Rui & Ge, Wen & Chen, Yubao, 2022. "Utilization of illumination and thermal field in the preparation of jet–fuel components: The photothermic catalysis of Jatropha oil over the M/TiO2–HZSM–5," Energy, Elsevier, vol. 239(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.