IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v278y2020ics0306261920312083.html
   My bibliography  Save this article

Seasonal energy performance characteristics of novel ejector-expansion air conditioners with low-GWP refrigerants

Author

Listed:
  • Jeon, Yongseok
  • Kim, Sunjae
  • Lee, Sang Hun
  • Chung, Hyun Joon
  • Kim, Yongchan

Abstract

The objective of this study is to investigate the seasonal performance characteristics of novel ejector-expansion air conditioners (EEACs) with low global warming potential refrigerants. A simplified simulation model for EEACs is developed and validated using measured data. Using a simulation model, the coefficient of performance, cooling seasonal performance factor, and life cycle climate performance of the EEACs employing low global warming potential refrigerants are analyzed at various operating conditions and modes. In addition, the climatic effects on the cooling seasonal performance factors and life cycle climate performances of the EEACs are evaluated at four different weather conditions. The EEAC with R290 exhibits the cooling seasonal performance factor and total CO2 emissions that are 22% higher and 23.3% lower, respectively, than those of the baseline air conditioner with R410A. In general, R290 is the best working fluid for EEACs in terms of the seasonal performance and lifetime environmental factor.

Suggested Citation

  • Jeon, Yongseok & Kim, Sunjae & Lee, Sang Hun & Chung, Hyun Joon & Kim, Yongchan, 2020. "Seasonal energy performance characteristics of novel ejector-expansion air conditioners with low-GWP refrigerants," Applied Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920312083
    DOI: 10.1016/j.apenergy.2020.115715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920312083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Wenyi & Li, Yaoyu, 2019. "Intermediate pressure optimization for two-stage air-source heat pump with flash tank cycle vapor injection via extremum seeking," Applied Energy, Elsevier, vol. 238(C), pages 612-626.
    2. Thongtip, Tongchana & Aphornratana, Satha, 2018. "Development and performance of a heat driven R141b ejector air conditioner: Application in hot climate country," Energy, Elsevier, vol. 160(C), pages 556-572.
    3. Jeon, Yongseok & Kim, Sunjae & Kim, Dongwoo & Chung, Hyun Joon & Kim, Yongchan, 2017. "Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions," Applied Energy, Elsevier, vol. 205(C), pages 1059-1067.
    4. Chen, Xiangjie & Worall, Mark & Omer, Siddig & Su, Yuehong & Riffat, Saffa, 2013. "Theoretical studies of a hybrid ejector CO2 compression cooling system for vehicles and preliminary experimental investigations of an ejector cycle," Applied Energy, Elsevier, vol. 102(C), pages 931-942.
    5. Bai, Tao & Yan, Gang & Yu, Jianlin, 2019. "Thermodynamic assessment of a condenser outlet split ejector-based high temperature heat pump cycle using various low GWP refrigerants," Energy, Elsevier, vol. 179(C), pages 850-862.
    6. Khennich, Mohammed & Galanis, Nicolas & Sorin, Mikhail, 2016. "Effects of design conditions and irreversibilities on the dimensions of ejectors in refrigeration systems," Applied Energy, Elsevier, vol. 179(C), pages 1020-1031.
    7. Chen, Weixiong & Shi, Chaoyin & Zhang, Shuangping & Chen, Huiqiang & Chong, Daotong & Yan, Junjie, 2017. "Theoretical analysis of ejector refrigeration system performance under overall modes," Applied Energy, Elsevier, vol. 185(P2), pages 2074-2084.
    8. Wang, Jixiang & Chen, Xingying & Xie, Jun & Xu, Shuyang & Yu, Kun & Gan, Lei, 2019. "Dynamic control strategy of residential air conditionings considering environmental and behavioral uncertainties," Applied Energy, Elsevier, vol. 250(C), pages 1312-1320.
    9. Redón, A. & Navarro-Peris, E. & Pitarch, M. & Gonzálvez-Macia, J. & Corberán, J.M., 2014. "Analysis and optimization of subcritical two-stage vapor injection heat pump systems," Applied Energy, Elsevier, vol. 124(C), pages 231-240.
    10. Sun, Zhili & Liang, Youcai & Liu, Shengchun & Ji, Weichuan & Zang, Runqing & Liang, Rongzhen & Guo, Zhikai, 2016. "Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A," Applied Energy, Elsevier, vol. 184(C), pages 19-25.
    11. Qv, Dehu & Dong, Bingbing & Cao, Lin & Ni, Long & Wang, Jijin & Shang, Runxin & Yao, Yang, 2017. "An experimental and theoretical study on an injection-assisted air-conditioner using R32 in the refrigeration cycle," Applied Energy, Elsevier, vol. 185(P1), pages 791-804.
    12. Jeon, Yongseok & Kim, Dongwoo & Jung, Jongho & Jang, Dong Soo & Kim, Yongchan, 2018. "Comparative performance evaluation of conventional and condenser outlet split ejector-based domestic refrigerator-freezers using R600a," Energy, Elsevier, vol. 161(C), pages 1085-1095.
    13. Li, Shengyu & Yan, Jia & Liu, Zhan & Yao, Yong & Li, Xianbi & Wen, Na & Zou, Guorong, 2019. "Optimization on crucial ejector geometries in a multi-evaporator refrigeration system for tropical region refrigerated trucks," Energy, Elsevier, vol. 189(C).
    14. D. Buyadgie & O. Buyadgie & S. Artemenko & A. Chamchine & O. Drakhnia, 2012. "Conceptual design of binary/multicomponent fluid ejector refrigeration systems," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 7(2), pages 120-127, April.
    15. Chen, Jianyong & Havtun, Hans & Palm, Björn, 2015. "Conventional and advanced exergy analysis of an ejector refrigeration system," Applied Energy, Elsevier, vol. 144(C), pages 139-151.
    16. Jeon, Yongseok & Jung, Jongho & Kim, Dongwoo & Kim, Sunjae & Kim, Yongchan, 2017. "Effects of ejector geometries on performance of ejector-expansion R410A air conditioner considering cooling seasonal performance factor," Applied Energy, Elsevier, vol. 205(C), pages 761-768.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
    2. Jeon, Yongseok & Kim, Sunjae & Kim, Dongwoo & Chung, Hyun Joon & Kim, Yongchan, 2017. "Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions," Applied Energy, Elsevier, vol. 205(C), pages 1059-1067.
    3. Yongseok Jeon & Hoon Kim & Jae Hwan Ahn & Sanghoon Kim, 2020. "Effects of Nozzle Exit Position on Condenser Outlet Split Ejector-Based R600a Household Refrigeration Cycle," Energies, MDPI, vol. 13(19), pages 1-12, October.
    4. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    5. Jeon, Yongseok & Jung, Jongho & Kim, Dongwoo & Kim, Sunjae & Kim, Yongchan, 2017. "Effects of ejector geometries on performance of ejector-expansion R410A air conditioner considering cooling seasonal performance factor," Applied Energy, Elsevier, vol. 205(C), pages 761-768.
    6. Braimakis, Konstantinos, 2021. "Solar ejector cooling systems: A review," Renewable Energy, Elsevier, vol. 164(C), pages 566-602.
    7. Liu, Ye & Yu, Jianlin, 2018. "Performance analysis of an advanced ejector-expansion autocascade refrigeration cycle," Energy, Elsevier, vol. 165(PB), pages 859-867.
    8. Tongchana Thongtip & Natthawut Ruangtrakoon, 2021. "Real Air-Conditioning Performance of Ejector Refrigerator Based Air-Conditioner Powered by Low Temperature Heat Source," Energies, MDPI, vol. 14(3), pages 1-20, January.
    9. Yao, Jian & Zheng, Sihang & Chen, Daochuan & Dai, Yanjun & Huang, Mingjun, 2021. "Performance improvement of vapor-injection heat pump system by employing PVT collector/evaporator for residential heating in cold climate region," Energy, Elsevier, vol. 219(C).
    10. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
    11. Wang, Jijin & Qv, Dehu & Yao, Yang & Ni, Long, 2021. "The difference between vapor injection cycle with flash tank and intermediate heat exchanger for air source heat pump: An experimental and theoretical study," Energy, Elsevier, vol. 221(C).
    12. Kim, Dongwoo & Song, Kang Sub & Lim, Junyub & Kim, Yongchan, 2018. "Analysis of two-phase injection heat pump using artificial neural network considering APF and LCCP under various weather conditions," Energy, Elsevier, vol. 155(C), pages 117-127.
    13. Ali Khalid Shaker Al-Sayyab & Joaquín Navarro-Esbrí & Victor Manuel Soto-Francés & Adrián Mota-Babiloni, 2021. "Conventional and Advanced Exergoeconomic Analysis of a Compound Ejector-Heat Pump for Simultaneous Cooling and Heating," Energies, MDPI, vol. 14(12), pages 1-27, June.
    14. Yang, Yan & Zhu, Xiaowei & Yan, Yuying & Ding, Hongbing & Wen, Chuang, 2019. "Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation," Applied Energy, Elsevier, vol. 242(C), pages 157-167.
    15. Hwang, Jun Kwon & Yun, Geun Young & Lee, Sukho & Seo, Hyeongjoon & Santamouris, Mat, 2020. "Using deep learning approaches with variable selection process to predict the energy performance of a heating and cooling system," Renewable Energy, Elsevier, vol. 149(C), pages 1227-1245.
    16. Haghparast, Payam & Sorin, Mikhail V. & Nesreddine, Hakim, 2018. "The impact of internal ejector working characteristics and geometry on the performance of a refrigeration cycle," Energy, Elsevier, vol. 162(C), pages 728-743.
    17. Zhang, Sheng & Cheng, Yong, 2017. "Performance improvement of an ejector cooling system with thermal pumping effect (ECSTPE) by doubling evacuation chambers in parallel," Applied Energy, Elsevier, vol. 187(C), pages 675-688.
    18. Bai, Tao & Yan, Gang & Yu, Jianlin, 2019. "Thermodynamic assessment of a condenser outlet split ejector-based high temperature heat pump cycle using various low GWP refrigerants," Energy, Elsevier, vol. 179(C), pages 850-862.
    19. Kim, Dongwoo & Myeong, Seongryeol & Cha, Dowon & Kim, Yongchan, 2019. "Novel optimized operating strategies of two-phase injection heat pumps for achieving best performance with safe compression," Energy, Elsevier, vol. 187(C).
    20. Jeon, Yongseok & Kim, Dongwoo & Jung, Jongho & Jang, Dong Soo & Kim, Yongchan, 2018. "Comparative performance evaluation of conventional and condenser outlet split ejector-based domestic refrigerator-freezers using R600a," Energy, Elsevier, vol. 161(C), pages 1085-1095.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920312083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.