IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v278y2020ics0306261920312034.html
   My bibliography  Save this article

Response characteristics of external receiver for concentrated solar power to disturbance during operation

Author

Listed:
  • Zhang, Qiang
  • Cao, Donghong
  • Ge, Zhihua
  • Du, Xiaoze

Abstract

The practical operation of the receiver for solar power tower plant is under unsteady conditions because of the variation of direct normal irradiation, as well as the output power load. A 100 MW external receiver was designed and selected as the object. The unsteady one-dimensional model was established for the receiver and validated by comparing the simulation results with the published experimental data, aiming to launch the thermal, hydraulic and mechanical analysis. The heat transfer characteristics, thermal efficiency, as well as the thermal stress in the flow direction, are demonstrated by the static analysis. By comparison of different panels, the harsh working condition of the first and the last panels is discovered, including that of the highest temperature difference and tangential thermal stress along tubes. The tangential thermal stress is prominent at the light spot. The molten salt at the last panel is most likely to decompose. Dynamic simulation is carried out to analyze the thermal inertia and heat transport characteristics. The response curves and time constants of the receiver under step and periodical disturbances of different factors from the environment and load side are acquired. The thermal inertia of the receiver and its effect to dampen weather fluctuation are illustrated. These security problems and thermal performance will make demands on the control strategy and control accuracy. The results can provide a reference for the control strategy development of the solar power tower plant.

Suggested Citation

  • Zhang, Qiang & Cao, Donghong & Ge, Zhihua & Du, Xiaoze, 2020. "Response characteristics of external receiver for concentrated solar power to disturbance during operation," Applied Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920312034
    DOI: 10.1016/j.apenergy.2020.115709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920312034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Minlin & Yang, Xiaoxi & Yang, Xiaoping & Ding, Jing, 2010. "Heat transfer enhancement and performance of the molten salt receiver of a solar power tower," Applied Energy, Elsevier, vol. 87(9), pages 2808-2811, September.
    2. Heide, Dominik & Greiner, Martin & von Bremen, Lüder & Hoffmann, Clemens, 2011. "Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation," Renewable Energy, Elsevier, vol. 36(9), pages 2515-2523.
    3. Yang, Xiaoping & Yang, Xiaoxi & Ding, Jing & Shao, Youyuan & Fan, Hongbo, 2012. "Numerical simulation study on the heat transfer characteristics of the tube receiver of the solar thermal power tower," Applied Energy, Elsevier, vol. 90(1), pages 142-147.
    4. Denholm, Paul & Mai, Trieu, 2019. "Timescales of energy storage needed for reducing renewable energy curtailment," Renewable Energy, Elsevier, vol. 130(C), pages 388-399.
    5. Hsieh, I-Yun Lisa & Pan, Menghsuan Sam & Chiang, Yet-Ming & Green, William H., 2019. "Learning only buys you so much: Practical limits on battery price reduction," Applied Energy, Elsevier, vol. 239(C), pages 218-224.
    6. Li, Xiaolei & Xu, Ershu & Song, Shuang & Wang, Xiangyan & Yuan, Guofeng, 2017. "Dynamic simulation of two-tank indirect thermal energy storage system with molten salt," Renewable Energy, Elsevier, vol. 113(C), pages 1311-1319.
    7. Zhang, Qiang & Wang, Zhiming & Du, Xiaoze & Yu, Gang & Wu, Hongwei, 2019. "Dynamic simulation of steam generation system in solar tower power plant," Renewable Energy, Elsevier, vol. 135(C), pages 866-876.
    8. Collado, Francisco J. & Guallar, Jesús, 2012. "Campo: Generation of regular heliostat fields," Renewable Energy, Elsevier, vol. 46(C), pages 49-59.
    9. Johlas, Hannah & Witherby, Shelby & Doyle, James R., 2020. "Storage requirements for high grid penetration of wind and solar power for the MISO region of North America: A case study," Renewable Energy, Elsevier, vol. 146(C), pages 1315-1324.
    10. Qi, Ye & Dong, Wenjuan & Dong, Changgui & Huang, Caiwei, 2019. "Understanding institutional barriers for wind curtailment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 476-486.
    11. Rodríguez-Sánchez, M.R. & Sánchez-González, A. & Santana, D., 2019. "Field-receiver model validation against Solar Two tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 43-52.
    12. Liao, Zhirong & Li, Xin & Xu, Chao & Chang, Chun & Wang, Zhifeng, 2014. "Allowable flux density on a solar central receiver," Renewable Energy, Elsevier, vol. 62(C), pages 747-753.
    13. Xu, Li & Stein, Wesley & Kim, Jin-Soo & Wang, Zhifeng, 2018. "Three-dimensional transient numerical model for the thermal performance of the solar receiver," Renewable Energy, Elsevier, vol. 120(C), pages 550-566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qiang & Jiang, Kaijun & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2021. "Control strategy of molten salt solar power tower plant function as peak load regulation in grid," Applied Energy, Elsevier, vol. 294(C).
    2. Wang, Di & Han, Xinrui & Li, Haoyu & Li, Xiaoli, 2023. "Dynamic simulation and parameter analysis of solar-coal hybrid power plant based on the supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 272(C).
    3. Zhang, Shuai & Yan, Yuying, 2022. "Evaluation of discharging performance of molten salt/ceramic foam composite phase change material in a shell-and-tube latent heat thermal energy storage unit," Renewable Energy, Elsevier, vol. 198(C), pages 1210-1223.
    4. Qiang Zhang & Kaijun Jiang & Yanqiang Kong & Jiangbo Wu & Xiaoze Du, 2021. "Study on Outlet Temperature Control of External Receiver for Solar Power Tower," Energies, MDPI, vol. 14(2), pages 1-18, January.
    5. Haoyu Huang & Ershu Xu & Lengge Si & Qiang Zhang & Qiang Huang, 2023. "Dynamic Thermal Transport Characteristics of a Real-Time Simulation Model for a 50 MW Solar Power Tower Plant," Energies, MDPI, vol. 16(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    2. Qiang Zhang & Kaijun Jiang & Yanqiang Kong & Jiangbo Wu & Xiaoze Du, 2021. "Study on Outlet Temperature Control of External Receiver for Solar Power Tower," Energies, MDPI, vol. 14(2), pages 1-18, January.
    3. Zhang, Qiang & Jiang, Kaijun & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2021. "Control strategy of molten salt solar power tower plant function as peak load regulation in grid," Applied Energy, Elsevier, vol. 294(C).
    4. Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Yu, Qiang & Fu, Peng & Yang, Yihui & Qiao, Jiafei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and parametric study of molten salt receiver of concentrating solar power tower plant," Energy, Elsevier, vol. 200(C).
    6. Chen, Jinli & Xiao, Gang & Xu, Haoran & Zhou, Xin & Yang, Jiamin & Ni, Mingjiang & Cen, Kefa, 2022. "Experiment and dynamic simulation of a solar tower collector system for power generation," Renewable Energy, Elsevier, vol. 196(C), pages 946-958.
    7. Zheng, Zhang-Jing & Li, Ming-Jia & He, Ya-Ling, 2017. "Thermal analysis of solar central receiver tube with porous inserts and non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 1152-1161.
    8. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K., 2016. "The optical efficiency of three different geometries of a small scale cavity receiver for concentrated solar applications," Applied Energy, Elsevier, vol. 179(C), pages 1081-1096.
    9. Xiao, Gang & Guo, Kaikai & Luo, Zhongyang & Ni, Mingjiang & Zhang, Yanmei & Wang, Cheng, 2014. "Simulation and experimental study on a spiral solid particle solar receiver," Applied Energy, Elsevier, vol. 113(C), pages 178-188.
    10. Zhang, Qiangqiang & Li, Xin & Wang, Zhifeng & Chang, Chun & Liu, Hong, 2013. "Experimental and theoretical analysis of a dynamic test method for molten salt cavity receiver," Renewable Energy, Elsevier, vol. 50(C), pages 214-221.
    11. Zhang, Qiangqiang & Li, Xin & Wang, Zhifeng & Zhang, Jinbai & El-Hefni, Baligh & Xu, Li, 2015. "Modeling and simulation of a molten salt cavity receiver with Dymola," Energy, Elsevier, vol. 93(P2), pages 1373-1384.
    12. Liao, Zhirong & Li, Xin & Xu, Chao & Chang, Chun & Wang, Zhifeng, 2014. "Allowable flux density on a solar central receiver," Renewable Energy, Elsevier, vol. 62(C), pages 747-753.
    13. Ghirardi, Elisa & Brumana, Giovanni & Franchini, Giuseppe & Perdichizzi, Antonio, 2021. "Heliostat layout optimization for load-following solar tower plants," Renewable Energy, Elsevier, vol. 168(C), pages 393-405.
    14. Rafique, Muhammad M. & Nathan, Graham & Saw, Woei, 2021. "A mathematical model to assess the influence of transients on a refractory-lined solar receiver," Renewable Energy, Elsevier, vol. 167(C), pages 217-235.
    15. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    16. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
    17. Sampath Kumar Venkatachary & Jagdish Prasad & Ravi Samikannu & Annamalai Alagappan & Leo John Baptist & Raymon Antony Raj, 2020. "Macro Economics of Virtual Power Plant for Rural Areas of Botswana," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 196-207.
    18. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    19. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920312034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.