IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v227y2018icp719-730.html
   My bibliography  Save this article

Experimental and numerical study on pressure drop and heat transfer performance of grille-sphere composite structured packed bed

Author

Listed:
  • Wang, Jingyu
  • Yang, Jian
  • Cheng, Zhilong
  • Liu, Yan
  • Chen, Yitung
  • Wang, Qiuwang

Abstract

Packed beds are widely used in industries, in which the flow and heat transfer characteristics of the packed bed may have a significant effect on the energy efficiency of the whole system. The flow and heat transfer characteristics of packed beds are greatly dependent on their structures. Therefore, it is crucial to develop new packing structures to improve the overall heat transfer performance of packed beds. In the present paper, a grille-sphere composite structured packed bed (GSCSPB) was developed. The new structure aims at overcoming the shortcomings of both randomly packed beds and traditional structured packed beds. A naphthalene sublimation experiment is conducted to measure the pressure drop and heat transfer in GSCSPB and evaluations of the comprehensive heat transfer performance are made to compare the GSCSPB with the randomly packed bed and structured packed bed. A 3-D model is set up to analyze the mechanism of the heat transfer enhancement by using FLUENT 14.0. Results show that firstly, GSCSPB has an excellent design property to reduce the pressure drop of the randomly packed bed and enhance the heat transfer of the structured packed bed, obtaining the highest overall heat transfer performance among the compared packed beds. Secondly, it demonstrates that the existence of the grille wall can change the velocity and temperature distributions, thus the heat transfer is enhanced in GSCSPB compared with a similar configuration without the grille. Finally, it indicates that the grille will help to design a new packing configuration which could achieve a structured packed bed easily and improve the overall heat transfer efficiency.

Suggested Citation

  • Wang, Jingyu & Yang, Jian & Cheng, Zhilong & Liu, Yan & Chen, Yitung & Wang, Qiuwang, 2018. "Experimental and numerical study on pressure drop and heat transfer performance of grille-sphere composite structured packed bed," Applied Energy, Elsevier, vol. 227(C), pages 719-730.
  • Handle: RePEc:eee:appene:v:227:y:2018:i:c:p:719-730
    DOI: 10.1016/j.apenergy.2017.07.140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917310152
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.07.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anderson, Ryan & Shiri, Samira & Bindra, Hitesh & Morris, Jeffrey F., 2014. "Experimental results and modeling of energy storage and recovery in a packed bed of alumina particles," Applied Energy, Elsevier, vol. 119(C), pages 521-529.
    2. Zanganeh, G. & Pedretti, A. & Haselbacher, A. & Steinfeld, A., 2015. "Design of packed bed thermal energy storage systems for high-temperature industrial process heat," Applied Energy, Elsevier, vol. 137(C), pages 812-822.
    3. Peng, Hao & Li, Rui & Ling, Xiang & Dong, Huihua, 2015. "Modeling on heat storage performance of compressed air in a packed bed system," Applied Energy, Elsevier, vol. 160(C), pages 1-9.
    4. Li, Long & Yan, Xiaohong & Yang, Jian & Wang, Qiuwang, 2017. "Numerical investigation on band-broadening characteristics of an ordered packed bed with novel particles," Applied Energy, Elsevier, vol. 185(P2), pages 2168-2180.
    5. Lu, Jianfeng & Chen, Yuan & Ding, Jing & Wang, Weilong, 2016. "High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor," Applied Energy, Elsevier, vol. 162(C), pages 1473-1482.
    6. Dhiman, Prashant & Thakur, N.S. & Kumar, Anoop & Singh, Satyender, 2011. "An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater," Applied Energy, Elsevier, vol. 88(6), pages 2157-2167, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    2. Shao, Wei & Cui, Zheng & Chen, Zhao-you & Wang, Jing-chen & Liu, Yu & Ren, Xiao-han & Luo, Feng, 2019. "Experimental and numerical measurements of the channel packed with disordered cement granules regarding the heat transfer performance," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Wu, Zhihong & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2023. "Numerical investigation of methane steam reforming in packed bed reactor with internal helical heat fins," Energy, Elsevier, vol. 278(PB).
    4. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Jingyu Wang & Zongxin Liu & Changfa Ji & Lang Liu, 2023. "Heat Transfer and Reaction Characteristics of Steam Methane Reforming in a Novel Composite Packed Bed Microreactor for Distributed Hydrogen Production," Energies, MDPI, vol. 16(11), pages 1-14, May.
    6. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Zhu, T.T. & Wang, T.Y. & Liang, L., 2021. "Numerical evaluation of the thermal performance of different types of double glazing flat-plate solar air collectors," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Wei & Cui, Zheng & Chen, Zhao-you & Wang, Jing-chen & Liu, Yu & Ren, Xiao-han & Luo, Feng, 2019. "Experimental and numerical measurements of the channel packed with disordered cement granules regarding the heat transfer performance," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Korba, David & Huang, Wei & Randhir, Kelvin & Petrasch, Joerg & Klausner, James & AuYeung, Nick & Li, Like, 2022. "A continuum model for heat and mass transfer in moving-bed reactors for thermochemical energy storage," Applied Energy, Elsevier, vol. 313(C).
    3. Cui, Zheng & Shao, Wei & Chen, Zhaoyou & Cheng, Lin, 2017. "Mathematical model and numerical solutions for the coupled gas–solid heat transfer process in moving packed beds," Applied Energy, Elsevier, vol. 206(C), pages 1297-1308.
    4. Mario Cascetta & Fabio Serra & Simone Arena & Efisio Casti & Giorgio Cau & Pierpaolo Puddu, 2016. "Experimental and Numerical Research Activity on a Packed Bed TES System," Energies, MDPI, vol. 9(9), pages 1-13, September.
    5. Li, Long & Yan, Xiaohong & Yang, Jian & Wang, Qiuwang, 2017. "Numerical investigation on band-broadening characteristics of an ordered packed bed with novel particles," Applied Energy, Elsevier, vol. 185(P2), pages 2168-2180.
    6. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Hoffmann, J.-F., 2018. "A temperature threshold evaluation for thermocline energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 212(C), pages 1153-1164.
    7. Peng, Hao & Li, Rui & Ling, Xiang & Dong, Huihua, 2015. "Modeling on heat storage performance of compressed air in a packed bed system," Applied Energy, Elsevier, vol. 160(C), pages 1-9.
    8. Attonaty, Kevin & Stouffs, Pascal & Pouvreau, Jérôme & Oriol, Jean & Deydier, Alexandre, 2019. "Thermodynamic analysis of a 200 MWh electricity storage system based on high temperature thermal energy storage," Energy, Elsevier, vol. 172(C), pages 1132-1143.
    9. Calderón-Vásquez, Ignacio & Cortés, Eduardo & García, Jesús & Segovia, Valentina & Caroca, Alejandro & Sarmiento, Cristóbal & Barraza, Rodrigo & Cardemil, José M., 2021. "Review on modeling approaches for packed-bed thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Mawire, Ashmore & Ekwomadu, Chidiebere S. & Lefenya, Tlotlo M. & Shobo, Adedamola, 2020. "Performance comparison of two metallic eutectic solder based medium-temperature domestic thermal energy storage systems," Energy, Elsevier, vol. 194(C).
    11. Yang, Bei & Bai, Fengwu & Wang, Yan & Wang, Zhifeng, 2019. "Study on standby process of an air-based solid packed bed for flexible high-temperature heat storage: Experimental results and modelling," Applied Energy, Elsevier, vol. 238(C), pages 135-146.
    12. Kumar, Anil & Kim, Man-Hoe, 2017. "Solar air-heating system with packed-bed energy-storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 215-227.
    13. Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
    14. Calderón-Vásquez, Ignacio & Segovia, Valentina & Cardemil, José M. & Barraza, Rodrigo, 2021. "Assessing the use of copper slags as thermal energy storage material for packed-bed systems," Energy, Elsevier, vol. 227(C).
    15. Peng, Hao & Shan, Xuekun & Yang, Yu & Ling, Xiang, 2018. "A study on performance of a liquid air energy storage system with packed bed units," Applied Energy, Elsevier, vol. 211(C), pages 126-135.
    16. He, Wei & Wang, Jihong & Wang, Yang & Ding, Yulong & Chen, Haisheng & Wu, Yuting & Garvey, Seamus, 2017. "Study of cycle-to-cycle dynamic characteristics of adiabatic Compressed Air Energy Storage using packed bed Thermal Energy Storage," Energy, Elsevier, vol. 141(C), pages 2120-2134.
    17. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2017. "Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 195(C), pages 761-773.
    18. Odenthal, Christian & Steinmann, Wolf-Dieter & Zunft, Stefan, 2020. "Analysis of a horizontal flow closed loop thermal energy storage system in pilot scale for high temperature applications – Part I: Experimental investigation of the plant," Applied Energy, Elsevier, vol. 263(C).
    19. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    20. Ghoreishi-Madiseh, Seyed Ali & Kalantari, Hosein & Kuyuk, Ali Fahrettin & Sasmito, Agus P., 2019. "A new model to analyze performance of mine exhaust heat recovery systems with coupled heat exchangers," Applied Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:227:y:2018:i:c:p:719-730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.