IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v227y2018icp128-136.html
   My bibliography  Save this article

Production of bio-jet fuel from corncob by hydrothermal decomposition and catalytic hydrogenation: Lab analysis of process and techno-economics of a pilot-scale facility

Author

Listed:
  • Li, Yuping
  • Zhao, Cong
  • Chen, Lungang
  • Zhang, Xinghua
  • Zhang, Qi
  • Wang, Tiejun
  • Qiu, Songbai
  • Tan, Jin
  • Li, Kai
  • Wang, Chenguang
  • Ma, Longlong

Abstract

Process design and techno-economic analysis of a pilot bio-jet fuel production facility were investigated using Aspen plus software and net present value method (NPV). This process include two-step hydrothermal decomposition of corncob to furfural (steam stripping of hemicellulose) and Levulinic acid (LA, acidic hydrolysis of cellulose), oxygenated precursor production via aldol condensation reaction of furfural and LA, and the subsequent hydro-processing for oxygen removal. Lab experiments on the major area of the process were carried out. The yields of furfural, LA, oxygenated precursor and bio-jet fuel-range hydrocarbons (C8–C15) were 59.5% (based on hemicellulose), 34.4% (based on cellulose), 75% (based on furfural and LA input) and 51wt% (based on precursor) respectively. These values were used as the input information for the process simulation of a first-of-a-kind pilot facility for 1.3ML/a bio-jet fuel production using this pioneering technology.

Suggested Citation

  • Li, Yuping & Zhao, Cong & Chen, Lungang & Zhang, Xinghua & Zhang, Qi & Wang, Tiejun & Qiu, Songbai & Tan, Jin & Li, Kai & Wang, Chenguang & Ma, Longlong, 2018. "Production of bio-jet fuel from corncob by hydrothermal decomposition and catalytic hydrogenation: Lab analysis of process and techno-economics of a pilot-scale facility," Applied Energy, Elsevier, vol. 227(C), pages 128-136.
  • Handle: RePEc:eee:appene:v:227:y:2018:i:c:p:128-136
    DOI: 10.1016/j.apenergy.2017.07.133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917310073
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.07.133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kandaramath Hari, Thushara & Yaakob, Zahira & Binitha, Narayanan N., 2015. "Aviation biofuel from renewable resources: Routes, opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1234-1244.
    2. Liu, Guangrui & Yan, Beibei & Chen, Guanyi, 2013. "Technical review on jet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 59-70.
    3. Glisic, Sandra B. & Pajnik, Jelena M. & Orlović, Aleksandar M., 2016. "Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production," Applied Energy, Elsevier, vol. 170(C), pages 176-185.
    4. Wang, Tiejun & Li, Kai & Liu, Qiying & Zhang, Qing & Qiu, Songbai & Long, Jinxing & Chen, Lungang & Ma, Longlong & Zhang, Qi, 2014. "Aviation fuel synthesis by catalytic conversion of biomass hydrolysate in aqueous phase," Applied Energy, Elsevier, vol. 136(C), pages 775-780.
    5. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    6. Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qiongyin & Xiao, Jun & Hao, Jingwen, 2023. "Cumulative exergy analysis of lignocellulosic biomass to bio-jet fuel through aqueous-phase conversion with different lignin conversion pathways," Energy, Elsevier, vol. 265(C).
    2. Jeyaseelan, Thangaraja & Ekambaram, Porpatham & Subramanian, Jayagopal & Shamim, Tariq, 2022. "A comprehensive review on the current trends, challenges and future prospects for sustainable mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Wang, Hongliang & Yang, Bin & Zhang, Qian & Zhu, Wanbin, 2020. "Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Zhongyang Luo & Qian Qian & Haoran Sun & Qi Wei & Jinsong Zhou & Kaige Wang, 2022. "Lignin-First Biorefinery for Converting Lignocellulosic Biomass into Fuels and Chemicals," Energies, MDPI, vol. 16(1), pages 1-25, December.
    5. Kim, Kyeongsu & Suh, Young-Woong & Ha, Jeong-Myeong & An, Jinjoo & Lee, Ung, 2023. "A comprehensive analysis of biphasic reaction system for economical biodiesel production process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
    2. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    3. Wang, Wei-Cheng & Liu, Yu-Cheng & Nugroho, Rusdan Aditya Aji, 2022. "Techno-economic analysis of renewable jet fuel production: The comparison between Fischer-Tropsch synthesis and pyrolysis," Energy, Elsevier, vol. 239(PA).
    4. Lim, Jackson Hwa Keen & Gan, Yong Yang & Ong, Hwai Chyuan & Lau, Beng Fye & Chen, Wei-Hsin & Chong, Cheng Tung & Ling, Tau Chuan & Klemeš, Jiří Jaromír, 2021. "Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    6. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    7. Li, Yuping & Huang, Xiaoming & Zhang, Qian & Chen, Lungang & Zhang, Xinghua & Wang, Tiejun & Ma, Longlong, 2015. "Hydrogenation and hydrodeoxygenation of difurfurylidene acetone to liquid alkanes over Raney Ni and the supported Pt catalysts," Applied Energy, Elsevier, vol. 160(C), pages 990-998.
    8. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Seyed Hashem Mousavi-Avval & Sami Khanal & Ajay Shah, 2023. "Assessment of Potential Pennycress Availability and Suitable Sites for Sustainable Aviation Fuel Refineries in Ohio," Sustainability, MDPI, vol. 15(13), pages 1-14, July.
    10. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2023. "Utilization of renewable and sustainable aviation biofuels from waste tyres for sustainable aviation transport sector," Energy, Elsevier, vol. 276(C).
    11. Santos, Catarina I. & Silva, Constança C. & Mussatto, Solange I. & Osseweijer, Patricia & van der Wielen, Luuk A.M. & Posada, John A., 2018. "Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment," Renewable Energy, Elsevier, vol. 129(PB), pages 733-747.
    12. Dossow, Marcel & Dieterich, Vincent & Hanel, Andreas & Spliethoff, Hartmut & Fendt, Sebastian, 2021. "Improving carbon efficiency for an advanced Biomass-to-Liquid process using hydrogen and oxygen from electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Life cycle energy and environmental impacts of hydroprocessed renewable jet fuel production from pennycress," Applied Energy, Elsevier, vol. 297(C).
    14. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Techno-economic analysis of hydroprocessed renewable jet fuel production from pennycress oilseed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Escalante, Edwin Santiago Rios & Ramos, Luth Silva & Rodriguez Coronado, Christian J. & de Carvalho Júnior, João Andrade, 2022. "Evaluation of the potential feedstock for biojet fuel production: Focus in the Brazilian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    16. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    17. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2020. "Techno-economic analysis of pennycress production, harvest and post-harvest logistics for renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    18. Cheng Tung Chong & Jo-Han Ng, 2023. "Limitations to sustainable renewable jet fuels production attributed to cost than energy-water-food resource availability," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Wang, Hongliang & Yang, Bin & Zhang, Qian & Zhu, Wanbin, 2020. "Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    20. Liao, Junwei & Zhong, Quanwang & Gu, Juwen & Qiu, Songbai & Meng, Qingwei & Zhang, Qian & Wang, Tiejun, 2022. "New approach for bio-jet fuels production by hydrodeoxygenation of higher alcohols derived from C-C coupling of bio-ethanol," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:227:y:2018:i:c:p:128-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.