IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp340-352.html
   My bibliography  Save this article

Engine-out emissions from a modern high speed diesel engine – The importance of Nozzle Tip Protrusion

Author

Listed:
  • Leach, Felix
  • Ismail, Riyaz
  • Davy, Martin

Abstract

Engine out emissions from a diesel engine are highly dependent on the nature of the fuel/air interactions in cylinder, which in turn depend on the detail of the fuel injection process. High temperatures, which promote soot oxidation, also promote NOx formation. Carefully controlling these interactions can lead to cleaner combustion resulting in lower engine-out emissions, thus reducing the burden on the aftertreatment system. In this work a minor (0.5 mm) variation in injector Nozzle Tip Protrusion (NTP) is tested, both experimentally and numerically, at two part-load and four full-load test points. The results indicate that a 0.5 mm variation in NTP can have a significant benefit in reducing soot emissions, across the engine operating map, whilst not having an impact on other emissions or fuel consumption. This paper demonstrates the practical importance of NTP, and demonstrates the sensitivity of engine-out emissions to relatively minor variations of this key element of the combustion system geometry which might occur naturally either in production or in service.

Suggested Citation

  • Leach, Felix & Ismail, Riyaz & Davy, Martin, 2018. "Engine-out emissions from a modern high speed diesel engine – The importance of Nozzle Tip Protrusion," Applied Energy, Elsevier, vol. 226(C), pages 340-352.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:340-352
    DOI: 10.1016/j.apenergy.2018.05.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918308377
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.05.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tauzia, Xavier & Maiboom, Alain, 2013. "Experimental study of an automotive Diesel engine efficiency when running under stoichiometric conditions," Applied Energy, Elsevier, vol. 105(C), pages 116-124.
    2. Leach, Felix & Ismail, Riyaz & Davy, Martin & Weall, Adam & Cooper, Brian, 2018. "The effect of a stepped lip piston design on performance and emissions from a high-speed diesel engine," Applied Energy, Elsevier, vol. 215(C), pages 679-689.
    3. Han, Sangwook & Kim, Jaeheun & Bae, Choongsik, 2014. "Effect of air–fuel mixing quality on characteristics of conventional and low temperature diesel combustion," Applied Energy, Elsevier, vol. 119(C), pages 454-466.
    4. S., d'Ambrosio & A., Ferrari, 2018. "Diesel engines equipped with piezoelectric and solenoid injectors: hydraulic performance of the injectors and comparison of the emissions, noise and fuel consumption," Applied Energy, Elsevier, vol. 211(C), pages 1324-1342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano d’Ambrosio & Alessandro Ferrari & Alessandro Mancarella & Salvatore Mancò & Antonio Mittica, 2019. "Comparison of the Emissions, Noise, and Fuel Consumption Comparison of Direct and Indirect Piezoelectric and Solenoid Injectors in a Low-Compression-Ratio Diesel Engine," Energies, MDPI, vol. 12(21), pages 1-16, October.
    2. Federico Millo & Andrea Piano & Benedetta Peiretti Paradisi & Mario Rocco Marzano & Andrea Bianco & Francesco C. Pesce, 2020. "Development and Assessment of an Integrated 1D-3D CFD Codes Coupling Methodology for Diesel Engine Combustion Simulation and Optimization," Energies, MDPI, vol. 13(7), pages 1-21, April.
    3. Taejung Kim & Jungsoo Park & Honghyun Cho, 2020. "Emission Characteristics under Diesel and Biodiesel Fueled Compression Ignition Engine with Various Injector Holes and EGR Conditions," Energies, MDPI, vol. 13(11), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
    3. Raul Payri & José M. García-Oliver & Victor Mendoza & Alberto Viera, 2020. "Analysis of the Influence of Diesel Spray Injection on the Ignition and Soot Formation in Multiple Injection Strategy," Energies, MDPI, vol. 13(13), pages 1-22, July.
    4. Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
    5. Wang, Yifeng & Yao, Mingfa & Li, Tie & Zhang, Weijing & Zheng, Zunqing, 2016. "A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads," Applied Energy, Elsevier, vol. 175(C), pages 389-402.
    6. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Federico Millo & Andrea Piano & Benedetta Peiretti Paradisi & Mario Rocco Marzano & Andrea Bianco & Francesco C. Pesce, 2020. "Development and Assessment of an Integrated 1D-3D CFD Codes Coupling Methodology for Diesel Engine Combustion Simulation and Optimization," Energies, MDPI, vol. 13(7), pages 1-21, April.
    8. Asish K. Sarangi & Gordon P. McTaggart-Cowan & Colin P. Garner, 2022. "The Impact of Fuel Injection Timing and Charge Dilution Rate on Low Temperature Combustion in a Compression Ignition Engine," Energies, MDPI, vol. 16(1), pages 1-21, December.
    9. Shim, Euijoon & Park, Hyunwook & Bae, Choongsik, 2018. "Intake air strategy for low HC and CO emissions in dual-fuel (CNG-diesel) premixed charge compression ignition engine," Applied Energy, Elsevier, vol. 225(C), pages 1068-1077.
    10. Stefano d’Ambrosio & Alessandro Ferrari & Alessandro Mancarella & Salvatore Mancò & Antonio Mittica, 2019. "Comparison of the Emissions, Noise, and Fuel Consumption Comparison of Direct and Indirect Piezoelectric and Solenoid Injectors in a Low-Compression-Ratio Diesel Engine," Energies, MDPI, vol. 12(21), pages 1-16, October.
    11. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    12. Kuwahara, T. & Nishii, S. & Kuroki, T. & Okubo, M., 2013. "Complete regeneration characteristics of diesel particulate filter using ozone injection," Applied Energy, Elsevier, vol. 111(C), pages 652-656.
    13. Jena, Ashutosh & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2022. "Optical and computational investigations of the effect of Spray-Swirl interactions on autoignition and soot formation in a compression ignition engine fuelled by Diesel, dieseline and diesohol," Applied Energy, Elsevier, vol. 324(C).
    14. Zhao, Xiaohuan & Liu, Fang & Wang, Chunhua, 2022. "Effects of different piston combustion chamber heights on heat transfer and energy conversion performance enhancement of a heavy-duty truck diesel engine," Energy, Elsevier, vol. 249(C).
    15. Leach, Felix & Ismail, Riyaz & Davy, Martin & Weall, Adam & Cooper, Brian, 2018. "The effect of a stepped lip piston design on performance and emissions from a high-speed diesel engine," Applied Energy, Elsevier, vol. 215(C), pages 679-689.
    16. Pastor, José V. & García, Antonio & Micó, Carlos & Lewiski, Felipe & Vassallo, Alberto & Pesce, Francesco Concetto, 2021. "Effect of a novel piston geometry on the combustion process of a light-duty compression ignition engine: An optical analysis," Energy, Elsevier, vol. 221(C).
    17. Du, Wei & Zhang, Qiankun & Zhang, Zheng & Lou, Juejue & Bao, Wenhua, 2018. "Effects of injection pressure on ignition and combustion characteristics of impinging diesel spray," Applied Energy, Elsevier, vol. 226(C), pages 1163-1168.
    18. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid, 2020. "Split diesel injection effect on knocking of natural gas/diesel dual-fuel engine at high load conditions," Applied Energy, Elsevier, vol. 279(C).
    19. Mansir, Ibrahim B. & Nemitallah, Medhat A. & Habib, Mohamed A. & Khalifa, Atia E., 2018. "Experimental and numerical investigation of flow field and oxy-methane combustion characteristics in a low-power porous-plate reactor," Energy, Elsevier, vol. 160(C), pages 783-795.
    20. Zhong, Wenjun & Pachiannan, Tamilselvan & Li, Zilong & Qian, Yong & Zhang, Yanzhi & Wang, Qian & He, Zhixia & Lu, Xingcai, 2019. "Combustion and emission characteristics of gasoline/hydrogenated catalytic biodiesel blends in gasoline compression ignition engines under different loads of double injection strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:340-352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.