IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v219y2018icp276-289.html
   My bibliography  Save this article

An equitable and efficient energy management approach for a cluster of interconnected price responsive demands

Author

Listed:
  • Vahabi, Ali Reza
  • Latify, Mohammad Amin
  • Rahimiyan, Morteza
  • Yousefi, G. Reza

Abstract

Equitable and efficient allocation is one of the basic principles in all energy management systems. Classic allocation methods tend to maximize the customers’ total surplus to achieve the maximum possible efficiency. From the perspective of equity, there are some elements of ambiguity in this approach. In this paper, a new approach is proposed to allocate consumed energy to the customers aimed at holding equity, while achieving maximum possible efficiency is taken into account. For this purpose, the energy consumption allocation is studied for a cluster of interconnected price-responsive demands (i.e., a group of loads, such as an industrial compound, which are interconnected to each other in a geographical area and also to the main network via a local electrical network). A centralized energy management for a cluster of members is a cooperative game. In this paper, the equilibria of the cooperative game are determined by solving a multi-objective optimization problem, constrained to the constraints of the local electrical network operation and also the demands constraints. The solution of this optimization problem results in a Pareto front of which each point represents an equilibrium of the cooperative game. Then, an equilibrium is selected based on the proposed equitable allocation. The nature of the proposed model is a bi-level optimization problem. In the first level, the optimization problem of selecting an equilibrium is formulated. In the second level, a multi-objective optimization problem is modeled to calculate all equilibria of the cooperative game. Accordingly, the energy consumed by demands is allocated through the proposed centralized energy management system which is established based on equity and efficiency. The results obtained from a test system show the advantages of the model in performing energy management for a cluster of price-responsive demands.

Suggested Citation

  • Vahabi, Ali Reza & Latify, Mohammad Amin & Rahimiyan, Morteza & Yousefi, G. Reza, 2018. "An equitable and efficient energy management approach for a cluster of interconnected price responsive demands," Applied Energy, Elsevier, vol. 219(C), pages 276-289.
  • Handle: RePEc:eee:appene:v:219:y:2018:i:c:p:276-289
    DOI: 10.1016/j.apenergy.2018.03.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918303775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anvari-Moghaddam, Amjad & Rahimi-Kian, Ashkan & Mirian, Maryam S. & Guerrero, Josep M., 2017. "A multi-agent based energy management solution for integrated buildings and microgrid system," Applied Energy, Elsevier, vol. 203(C), pages 41-56.
    2. PierCarlo Nicola, 2013. "Efficiency and Equity in Welfare Economics," Lecture Notes in Economics and Mathematical Systems, Springer, edition 127, number 978-3-642-30071-4, October.
    3. Lv, Tianguang & Ai, Qian, 2016. "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, Elsevier, vol. 163(C), pages 408-422.
    4. Zenginis, Ioannis & Vardakas, John S. & Echave, Cynthia & Morató, Moisés & Abadal, Jordi & Verikoukis, Christos V., 2017. "Cooperation in microgrids through power exchange: An optimal sizing and operation approach," Applied Energy, Elsevier, vol. 203(C), pages 972-981.
    5. RUIZ, Carlos & CONEJO, Antonio J. & SMEERS, Yves, 2012. "Equilibria in an oligopolistic electricity pool with stepwise offer curves," LIDAM Reprints CORE 2395, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    7. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.
    8. PierCarlo Nicola, 2013. "Efficiency and Welfare," Lecture Notes in Economics and Mathematical Systems, in: Efficiency and Equity in Welfare Economics, edition 127, chapter 0, pages 41-47, Springer.
    9. Reihani, Ehsan & Motalleb, Mahdi & Thornton, Matsu & Ghorbani, Reza, 2016. "A novel approach using flexible scheduling and aggregation to optimize demand response in the developing interactive grid market architecture," Applied Energy, Elsevier, vol. 183(C), pages 445-455.
    10. Pascual, Julio & Barricarte, Javier & Sanchis, Pablo & Marroyo, Luis, 2015. "Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting," Applied Energy, Elsevier, vol. 158(C), pages 12-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sobhani, Seyed Omid & Sheykhha, Siamak & Madlener, Reinhard, 2020. "An integrated two-level demand-side management game applied to smart energy hubs with storage," Energy, Elsevier, vol. 206(C).
    2. Wang, Bing & Wei, Yi-Ming & Yuan, Xiao-Chen, 2018. "Possible design with equity and responsibility in China’s renewable portfolio standards," Applied Energy, Elsevier, vol. 232(C), pages 685-694.
    3. Lonergan, Katherine Emma & Suter, Nicolas & Sansavini, Giovanni, 2023. "Energy systems modelling for just transitions," Energy Policy, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    3. Mehdizadeh, Ali & Taghizadegan, Navid & Salehi, Javad, 2018. "Risk-based energy management of renewable-based microgrid using information gap decision theory in the presence of peak load management," Applied Energy, Elsevier, vol. 211(C), pages 617-630.
    4. Md Mainul Islam & Mahmood Nagrial & Jamal Rizk & Ali Hellany, 2021. "General Aspects, Islanding Detection, and Energy Management in Microgrids: A Review," Sustainability, MDPI, vol. 13(16), pages 1-45, August.
    5. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    6. Zhu, Ziqing & Wing Chan, Ka & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2021. "Real-Time interaction of active distribution network and virtual microgrids: Market paradigm and data-driven stakeholder behavior analysis," Applied Energy, Elsevier, vol. 297(C).
    7. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    8. Irena Antošová & Jana Stávková, 2019. "Application of the Institute of Income Redistribution in the Form of Social Transfers in EU Countries," DANUBE: Law and Economics Review, European Association Comenius - EACO, issue 2, pages 161-172, June.
    9. Mikuláš Luptáčik & Eduard Nežinský, 2020. "Measuring income inequalities beyond the Gini coefficient," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(2), pages 561-578, June.
    10. Eduard Nezinsky & Mikulas Luptacik, 2018. "Measuring income inequalities beyond Gini index," Department of Economic Policy Working Paper Series 013, Department of Economic Policy, Faculty of National Economy, University of Economics in Bratislava.
    11. Umeozor, Evar Chinedu & Trifkovic, Milana, 2016. "Operational scheduling of microgrids via parametric programming," Applied Energy, Elsevier, vol. 180(C), pages 672-681.
    12. Sahoo, Subham & Pullaguram, Deepak & Mishra, Sukumar & Wu, Jianzhong & Senroy, Nilanjan, 2018. "A containment based distributed finite-time controller for bounded voltage regulation & proportionate current sharing in DC microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2526-2538.
    13. Li, Shenglin & Zhu, Jizhong & Chen, Ziyu & Luo, Tengyan, 2021. "Double-layer energy management system based on energy sharing cloud for virtual residential microgrid," Applied Energy, Elsevier, vol. 282(PA).
    14. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.
    15. Pascual, Julio & Arcos-Aviles, Diego & Ursúa, Alfredo & Sanchis, Pablo & Marroyo, Luis, 2021. "Energy management for an electro-thermal renewable–based residential microgrid with energy balance forecasting and demand side management," Applied Energy, Elsevier, vol. 295(C).
    16. Kou, Peng & Liang, Deliang & Gao, Lin, 2017. "Distributed EMPC of multiple microgrids for coordinated stochastic energy management," Applied Energy, Elsevier, vol. 185(P1), pages 939-952.
    17. Fang, Xinli & Yang, Qiang & Wang, Jianhui & Yan, Wenjun, 2016. "Coordinated dispatch in multiple cooperative autonomous islanded microgrids," Applied Energy, Elsevier, vol. 162(C), pages 40-48.
    18. Rafal Dzikowski, 2020. "DSO–TSO Coordination of Day-Ahead Operation Planning with the Use of Distributed Energy Resources," Energies, MDPI, vol. 13(14), pages 1-25, July.
    19. Fan, Songli & Ai, Qian & Piao, Longjian, 2018. "Bargaining-based cooperative energy trading for distribution company and demand response," Applied Energy, Elsevier, vol. 226(C), pages 469-482.
    20. Haddadian, Hossein & Noroozian, Reza, 2017. "Multi-microgrids approach for design and operation of future distribution networks based on novel technical indices," Applied Energy, Elsevier, vol. 185(P1), pages 650-663.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:219:y:2018:i:c:p:276-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.