IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v212y2018icp1262-1281.html
   My bibliography  Save this article

Charge-sensitive modelling of organic Rankine cycle power systems for off-design performance simulation

Author

Listed:
  • Dickes, Rémi
  • Dumont, Olivier
  • Guillaume, Ludovic
  • Quoilin, Sylvain
  • Lemort, Vincent

Abstract

This paper focuses on a charge-sensitive model to characterize the off-design performance of low-capacity organic Rankine cycle (ORC) power systems. The goal is to develop a reliable steady-state model that only uses the system boundary conditions (i.e. the supply heat source/heat sink conditions, the mechanical components rotational speeds, the ambient temperature and the total charge of working fluid) in order to predict the ORC performance. To this end, sub-models are developed to simulate each component and they are assembled to model the entire closed-loop system. A dedicated solver architecture is proposed to ensure high-robustness for charge-sensitive simulations.

Suggested Citation

  • Dickes, Rémi & Dumont, Olivier & Guillaume, Ludovic & Quoilin, Sylvain & Lemort, Vincent, 2018. "Charge-sensitive modelling of organic Rankine cycle power systems for off-design performance simulation," Applied Energy, Elsevier, vol. 212(C), pages 1262-1281.
  • Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:1262-1281
    DOI: 10.1016/j.apenergy.2018.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918300047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dickes, Rémi & Dumont, Olivier & Daccord, Rémi & Quoilin, Sylvain & Lemort, Vincent, 2017. "Modelling of organic Rankine cycle power systems in off-design conditions: An experimentally-validated comparative study," Energy, Elsevier, vol. 123(C), pages 710-727.
    2. Adriano Desideri & Bertrand Dechesne & Jorrit Wronski & Martijn Van den Broek & Sergei Gusev & Vincent Lemort & Sylvain Quoilin, 2016. "Comparison of Moving Boundary and Finite-Volume Heat Exchanger Models in the Modelica Language," Energies, MDPI, vol. 9(5), pages 1-18, May.
    3. E. Georges & S. Declaye & O. Dumont & S. Quoilin & V. Lemort, 2013. "Design of a small-scale organic Rankine cycle engine used in a solar power plant," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 8(suppl_1), pages 34-41, April.
    4. Manente, Giovanni & Toffolo, Andrea & Lazzaretto, Andrea & Paci, Marco, 2013. "An Organic Rankine Cycle off-design model for the search of the optimal control strategy," Energy, Elsevier, vol. 58(C), pages 97-106.
    5. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    6. Davide Ziviani & Brandon J. Woodland & Emeline Georges & Eckhard A. Groll & James E. Braun & W. Travis Horton & Martijn Van den Broek & Michel De Paepe, 2016. "Development and a Validation of a Charge Sensitive Organic Rankine Cycle (ORC) Simulation Tool," Energies, MDPI, vol. 9(6), pages 1-36, May.
    7. Hu, Dongshuai & Zheng, Ya & Wu, Yi & Li, Saili & Dai, Yiping, 2015. "Off-design performance comparison of an organic Rankine cycle under different control strategies," Applied Energy, Elsevier, vol. 156(C), pages 268-279.
    8. Ibarra, Mercedes & Rovira, Antonio & Alarcón-Padilla, Diego-César & Blanco, Julián, 2014. "Performance of a 5kWe Organic Rankine Cycle at part-load operation," Applied Energy, Elsevier, vol. 120(C), pages 147-158.
    9. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oh, Jinwoo & Park, Yunjae & Lee, Hoseong, 2022. "Development of a fully deterministic simulation model for organic Rankine cycle operating under off-design conditions," Applied Energy, Elsevier, vol. 307(C).
    2. Ancona, Maria Alessandra & Bianchi, Michele & Branchini, Lisa & De Pascale, Andrea & Melino, Francesco & Peretto, Antonio & Poletto, Chiara & Torricelli, Noemi, 2022. "Solar driven micro-ORC system assessment for residential application," Renewable Energy, Elsevier, vol. 195(C), pages 167-181.
    3. Oh, Jinwoo & Jeong, Hoyoung & Kim, Joonbyum & Lee, Hoseong, 2020. "Numerical and experimental investigation on thermal-hydraulic characteristics of a scroll expander for organic Rankine cycle," Applied Energy, Elsevier, vol. 278(C).
    4. Zhang, Zhaoli & Alelyani, Sami M. & Zhang, Nan & Zeng, Chao & Yuan, Yanping & Phelan, Patrick E., 2018. "Thermodynamic analysis of a novel sodium hydroxide-water solution absorption refrigeration, heating and power system for low-temperature heat sources," Applied Energy, Elsevier, vol. 222(C), pages 1-12.
    5. Oh, Jinwoo & Jeong, Hoyoung & Lee, Hoseong, 2021. "Experimental and numerical analysis on low-temperature off-design organic Rankine cycle in perspective of mass conservation," Energy, Elsevier, vol. 234(C).
    6. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    7. Liu, Liuchen & Zhu, Tong & Wang, Tiantian & Gao, Naiping, 2019. "Experimental investigation on the effect of working fluid charge in a small-scale Organic Rankine Cycle under off-design conditions," Energy, Elsevier, vol. 174(C), pages 664-677.
    8. Wang, Z.X. & Du, S. & Wang, L.W. & Chen, X., 2020. "Parameter analysis of an ammonia-water power cycle with a gravity assisted thermal driven “pump” for low-grade heat recovery," Renewable Energy, Elsevier, vol. 146(C), pages 651-661.
    9. Lecompte, Steven & Gusev, Sergei & Vanslambrouck, Bruno & De Paepe, Michel, 2018. "Experimental results of a small-scale organic Rankine cycle: Steady state identification and application to off-design model validation," Applied Energy, Elsevier, vol. 226(C), pages 82-106.
    10. Kang Li & Jun Yu & Mingkang Liu & Dan Xu & Lin Su & Yidong Fang, 2020. "A Study of Optimal Refrigerant Charge Amount Determination for Air-Conditioning Heat Pump System in Electric Vehicles," Energies, MDPI, vol. 13(3), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lecompte, Steven & Gusev, Sergei & Vanslambrouck, Bruno & De Paepe, Michel, 2018. "Experimental results of a small-scale organic Rankine cycle: Steady state identification and application to off-design model validation," Applied Energy, Elsevier, vol. 226(C), pages 82-106.
    2. Dickes, Rémi & Dumont, Olivier & Daccord, Rémi & Quoilin, Sylvain & Lemort, Vincent, 2017. "Modelling of organic Rankine cycle power systems in off-design conditions: An experimentally-validated comparative study," Energy, Elsevier, vol. 123(C), pages 710-727.
    3. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    4. Osman Özkaraca & Pınar Keçebaş & Cihan Demircan & Ali Keçebaş, 2017. "Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm," Energies, MDPI, vol. 10(11), pages 1-28, October.
    5. Oh, Jinwoo & Park, Yunjae & Lee, Hoseong, 2022. "Development of a fully deterministic simulation model for organic Rankine cycle operating under off-design conditions," Applied Energy, Elsevier, vol. 307(C).
    6. Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
    7. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    8. Wieland, Christoph & Meinel, Dominik & Eyerer, Sebastian & Spliethoff, Hartmut, 2016. "Innovative CHP concept for ORC and its benefit compared to conventional concepts," Applied Energy, Elsevier, vol. 183(C), pages 478-490.
    9. Roberto Pili & Hartmut Spliethoff & Christoph Wieland, 2017. "Dynamic Simulation of an Organic Rankine Cycle—Detailed Model of a Kettle Boiler," Energies, MDPI, vol. 10(4), pages 1-28, April.
    10. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    11. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    12. Ben-Ran Fu, 2016. "A Flow Rate Control Approach on Off-Design Analysis of an Organic Rankine Cycle System," Energies, MDPI, vol. 9(9), pages 1-9, September.
    13. Fu, Ben-Ran & Hsu, Sung-Wei & Liu, Chih-Hsi & Liu, Yu-Ching, 2014. "Statistical analysis of patent data relating to the organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 986-994.
    14. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Peris, Bernardo & Navarro-Esbrí, Joaquín & Molés, Francisco & Mota-Babiloni, Adrián, 2015. "Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry," Energy, Elsevier, vol. 85(C), pages 534-542.
    16. Petrollese, Mario & Cau, Giorgio & Cocco, Daniele, 2020. "The Ottana solar facility: dispatchable power from small-scale CSP plants based on ORC systems," Renewable Energy, Elsevier, vol. 147(P3), pages 2932-2943.
    17. Luo, Xianglong & Wei, Youxing & Qiu, Guanfu & Liang, Yingzong & Chen, Jianyong & Yang, Zhi & Wang, Chao & Chen, Ying, 2020. "Simultaneous design and off-design operation optimization of a waste heat-driven organic Rankine cycle using a multi-period mathematical programming method," Energy, Elsevier, vol. 213(C).
    18. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    19. Tieyu Gao & Changwei Liu, 2017. "Off-Design Performances of Subcritical and Supercritical Organic Rankine Cycles in Geothermal Power Systems under an Optimal Control Strategy," Energies, MDPI, vol. 10(8), pages 1-25, August.
    20. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:212:y:2018:i:c:p:1262-1281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.