IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v210y2018icp1229-1236.html
   My bibliography  Save this article

Optimal planning of microgrid power and operating reserve capacity

Author

Listed:
  • Quashie, Mike
  • Marnay, Chris
  • Bouffard, François
  • Joós, Géza

Abstract

This paper proposes a bi–level formulation for a coupled microgrid power and reserve capacity planning problem, cast within the jurisdiction of a distribution system operator(DSO). The upper level problem of the proposed bi–level model represents a microgrid planner whose goal is to minimize its planning and operational cost, while the lower level problem represents a DSO whose primary duty is to ensure reliable power supply. The microgrid planner, pursues its interest by co–optimizing the design configuration and power output of individual distributed energy resources (DERs), while the DSO maximizes the capacity of flexible reserve resources. The proposed model is recast as a mathematical program with equilibrium constraints (MPEC) wherein the decision variables of the two problems are independently controlled. Application of the proposed approach to the energy infrastructure of a Canadian utility network is discussed. Results obtained through its application are compared to an alternative multi–objective planning model and the improved benefits are assigned to the corresponding stakeholders.

Suggested Citation

  • Quashie, Mike & Marnay, Chris & Bouffard, François & Joós, Géza, 2018. "Optimal planning of microgrid power and operating reserve capacity," Applied Energy, Elsevier, vol. 210(C), pages 1229-1236.
  • Handle: RePEc:eee:appene:v:210:y:2018:i:c:p:1229-1236
    DOI: 10.1016/j.apenergy.2017.08.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917310309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohan, Vivek & Singh, Jai Govind & Ongsakul, Weerakorn, 2015. "An efficient two stage stochastic optimal energy and reserve management in a microgrid," Applied Energy, Elsevier, vol. 160(C), pages 28-38.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Houhe & Wang, Di & Zhang, Rufeng & Jiang, Tao & Li, Xue, 2022. "Optimal participation of ADN in energy and reserve markets considering TSO-DSO interface and DERs uncertainties," Applied Energy, Elsevier, vol. 308(C).
    2. Jin, Hongyang & Li, Zhengshuo & Sun, Hongbin & Guo, Qinglai & Chen, Runze & Wang, Bin, 2017. "A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment," Applied Energy, Elsevier, vol. 206(C), pages 1364-1378.
    3. Li, Jianwei & Xiong, Rui & Mu, Hao & Cornélusse, Bertrand & Vanderbemden, Philippe & Ernst, Damien & Yuan, Weijia, 2018. "Design and real-time test of a hybrid energy storage system in the microgrid with the benefit of improving the battery lifetime," Applied Energy, Elsevier, vol. 218(C), pages 470-478.
    4. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).
    7. González-Garrido, A. & Gaztañaga, H. & Saez-de-Ibarra, A. & Milo, A. & Eguia, P., 2020. "Electricity and reserve market bidding strategy including sizing evaluation and a novel renewable complementarity-based centralized control for storage lifetime enhancement," Applied Energy, Elsevier, vol. 262(C).
    8. Mousavizadeh, Saeed & Haghifam, Mahmoud-Reza & Shariatkhah, Mohammad-Hossein, 2018. "A linear two-stage method for resiliency analysis in distribution systems considering renewable energy and demand response resources," Applied Energy, Elsevier, vol. 211(C), pages 443-460.
    9. Liu, Yuan & He, Li & Shen, Jing, 2017. "Optimization-based provincial hybrid renewable and non-renewable energy planning – A case study of Shanxi, China," Energy, Elsevier, vol. 128(C), pages 839-856.
    10. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    11. Ikeda, Shintaro & Ooka, Ryozo, 2019. "Application of differential evolution-based constrained optimization methods to district energy optimization and comparison with dynamic programming," Applied Energy, Elsevier, vol. 254(C).
    12. Wang, Guang Chao & Ratnam, Elizabeth & Haghi, Hamed Valizadeh & Kleissl, Jan, 2019. "Corrective receding horizon EV charge scheduling using short-term solar forecasting," Renewable Energy, Elsevier, vol. 130(C), pages 1146-1158.
    13. Sreedharan, P. & Farbes, J. & Cutter, E. & Woo, C.K. & Wang, J., 2016. "Microgrid and renewable generation integration: University of California, San Diego," Applied Energy, Elsevier, vol. 169(C), pages 709-720.
    14. Kou, Peng & Liang, Deliang & Gao, Lin, 2017. "Distributed EMPC of multiple microgrids for coordinated stochastic energy management," Applied Energy, Elsevier, vol. 185(P1), pages 939-952.
    15. Md Mainul Islam & Mahmood Nagrial & Jamal Rizk & Ali Hellany, 2021. "General Aspects, Islanding Detection, and Energy Management in Microgrids: A Review," Sustainability, MDPI, vol. 13(16), pages 1-45, August.
    16. Wang, Lu & Sharkh, Suleiman & Chipperfield, Andy, 2016. "Optimal coordination of vehicle-to-grid batteries and renewable generators in a distribution system," Energy, Elsevier, vol. 113(C), pages 1250-1264.
    17. Tao, Laifa & Ma, Jian & Cheng, Yujie & Noktehdan, Azadeh & Chong, Jin & Lu, Chen, 2017. "A review of stochastic battery models and health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 716-732.
    18. Wang, Jing & Zhao, Changhong & Pratt, Annabelle & Baggu, Murali, 2018. "Design of an advanced energy management system for microgrid control using a state machine," Applied Energy, Elsevier, vol. 228(C), pages 2407-2421.
    19. Jiang, Tao & Wu, Chenghao & Zhang, Rufeng & Li, Xue & Li, Fangxing, 2022. "Risk-averse TSO-DSOs coordinated distributed dispatching considering renewable energy and demand response uncertainties," Applied Energy, Elsevier, vol. 327(C).
    20. Weiwei Cui & Lin Li & Zhiqiang Lu, 2019. "Energy‐efficient scheduling for sustainable manufacturing systems with renewable energy resources," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(2), pages 154-173, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:210:y:2018:i:c:p:1229-1236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.