IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v206y2017icp558-567.html
   My bibliography  Save this article

Mechanism analysis on controllable methanol quick combustion

Author

Listed:
  • Han, Guopeng
  • Yao, Anren
  • Yao, Chunde
  • Wu, Taoyang
  • Wang, Bin
  • Wei, Hongyuan

Abstract

This paper explored the reason that the amount of methanol consumed is much lower than that of its theoretical value in terms of calorific value in diesel methanol dual fuel (DMDF) combustion by the means of engine bench test and modeling analysis. The results from experiments show that, the DMDF has much higher combustion rate than that of the correspondent diesel (D) mode and the accelerating effect caused by methanol changes with engine load, methanol-air mixture concentration and intake air temperature. At low load condition, the ignition delay caused by methanol is dominated while the accelerating effect is weak. However, this situation just turned upside down at high loads, to bring forth great improvement in isochoric degree. When methanol conducts quickly burning, both the combustion efficiency and the conversion efficiency from heat to work are improved, and the replacement ratio SR becomes much lower than its theoretical value 2.16. In order to reveal the mechanism of high efficiency DMDF at various running conditions, a 3-dimensional CFD model to simulate and analysis the process of methanol burning together with diesel was built. By fixing constant operating parameters and boundary conditions, both the putting off and accelerating effects caused by methanol are enhanced with increasing methanol concentration. The putting off effect weakens with rising air temperature, while the accelerating effect becomes more effective in this process. Hence, the isochoric degree for DMDF deteriorates with rising air temperature at lean methanol mixture but improves as the concentration increases. Finally, a relational graph among isochoric degree, heat release concentration degree, methanol-air mixture concentration and temperature are derived, from which we get the understanding of controllable methanol quick combustion (CMQC) to further improve the DMDF thermal efficiency.

Suggested Citation

  • Han, Guopeng & Yao, Anren & Yao, Chunde & Wu, Taoyang & Wang, Bin & Wei, Hongyuan, 2017. "Mechanism analysis on controllable methanol quick combustion," Applied Energy, Elsevier, vol. 206(C), pages 558-567.
  • Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:558-567
    DOI: 10.1016/j.apenergy.2017.08.177
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917312047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geng, Peng & Yao, Chunde & Wang, Quangang & Wei, Lijiang & Liu, Junheng & Pan, Wang & Han, Guopeng, 2015. "Effect of DMDF on the PM emission from a turbo-charged diesel engine with DDOC and DPOC," Applied Energy, Elsevier, vol. 148(C), pages 449-455.
    2. Kamil, Mohammed & Rahman, M.M., 2015. "Performance prediction of spark-ignition engine running on gasoline-hydrogen and methane-hydrogen blends," Applied Energy, Elsevier, vol. 158(C), pages 556-567.
    3. Wei, Lijiang & Yao, Chunde & Han, Guopeng & Pan, Wang, 2016. "Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed diesel engine," Energy, Elsevier, vol. 95(C), pages 223-232.
    4. Yun, Kyung Tae & Cho, Heejin & Luck, Rogelio & Mago, Pedro J., 2013. "Modeling of reciprocating internal combustion engines for power generation and heat recovery," Applied Energy, Elsevier, vol. 102(C), pages 327-335.
    5. Alrazen, Hayder A. & Abu Talib, A.R. & Adnan, R. & Ahmad, K.A., 2016. "A review of the effect of hydrogen addition on the performance and emissions of the compression – Ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 785-796.
    6. Hamdan, Mohammad O. & Selim, Mohamed Y.E. & Al-Omari, Salah-A.B. & Elnajjar, Emad, 2015. "Hydrogen supplement co-combustion with diesel in compression ignition engine," Renewable Energy, Elsevier, vol. 82(C), pages 54-60.
    7. Nazemi, M. & Shahbakhti, M., 2016. "Modeling and analysis of fuel injection parameters for combustion and performance of an RCCI engine," Applied Energy, Elsevier, vol. 165(C), pages 135-150.
    8. Kacem, Sahar Hadj & Jemni, Mohamed Ali & Driss, Zied & Abid, Mohamed Salah, 2016. "The effect of H2 enrichment on in-cylinder flow behavior, engine performances and exhaust emissions: Case of LPG-hydrogen engine," Applied Energy, Elsevier, vol. 179(C), pages 961-971.
    9. Fu, Jianqin & Liu, Jingping & Feng, Renhua & Yang, Yanping & Wang, Linjun & Wang, Yong, 2013. "Energy and exergy analysis on gasoline engine based on mapping characteristics experiment," Applied Energy, Elsevier, vol. 102(C), pages 622-630.
    10. Kamiuto, K., 2006. "Comparison of basic gas cycles under the restriction of constant heat addition," Applied Energy, Elsevier, vol. 83(6), pages 583-593, June.
    11. Badawy, Tawfik & Bao, XiuChao & Xu, Hongming, 2017. "Impact of spark plug gap on flame kernel propagation and engine performance," Applied Energy, Elsevier, vol. 191(C), pages 311-327.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Shijie & Zhong, Shenghui & Pang, Kar Mun & Yu, Senbin & Jangi, Mehdi & Bai, Xue-song, 2020. "Effects of ambient methanol on pollutants formation in dual-fuel spray combustion at varying ambient temperatures: A large-eddy simulation," Applied Energy, Elsevier, vol. 279(C).
    2. Gong, Changming & Li, Zhaohui & Sun, Jingzhen & Liu, Fenghua, 2020. "Evaluation on combustion and lean-burn limitof a medium compression ratio hydrogen/methanol dual-injection spark-ignition engine under methanol late-injection," Applied Energy, Elsevier, vol. 277(C).
    3. Gong, Changming & Yi, Lin & Zhang, Zilei & Sun, Jingzhen & Liu, Fenghua, 2020. "Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios," Applied Energy, Elsevier, vol. 261(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Teng & Ji, Changwei & Wang, Shuofeng & Shi, Lei & Yang, Jinxin & Cong, Xiaoyu, 2017. "Investigation on performance of a hydrogen-gasoline rotary engine at part load and lean conditions," Applied Energy, Elsevier, vol. 205(C), pages 683-691.
    2. Hosseini, S. Mohammad & Ahmadi, Rouhollah, 2017. "Performance and emissions characteristics in the combustion of co-fuel diesel-hydrogen in a heavy duty engine," Applied Energy, Elsevier, vol. 205(C), pages 911-925.
    3. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Deng, Shuai & Li, Xiaoya & Chang, Liwen, 2017. "Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat," Applied Energy, Elsevier, vol. 186(P3), pages 423-435.
    4. Li, Ligeng & Tian, Hua & Liu, Peng & Shi, Lingfeng & Shu, Gequn, 2021. "Optimization of CO2 Transcritical Power Cycle (CTPC) for engine waste heat recovery based on split concept," Energy, Elsevier, vol. 229(C).
    5. Ma, Baodong & Yao, Anren & Yao, Chunde & Wang, Wenchao & Ai, Youkai, 2021. "Numerical investigation and experimental validation on the leakage of methanol and formaldehyde in diesel methanol dual fuel engine with different valve overlap," Applied Energy, Elsevier, vol. 300(C).
    6. Amiri Rad, Ehsan & Maddah, Saeed & Mohammadi, Saeed, 2020. "Designing and optimizing a novel cogeneration system for an office building based on thermo-economic and environmental analyses," Renewable Energy, Elsevier, vol. 151(C), pages 342-354.
    7. Wang, Shun-sen & Wu, Chuang & Li, Jun, 2018. "Exergoeconomic analysis and optimization of single-pressure single-stage and multi-stage CO2 transcritical power cycles for engine waste heat recovery: A comparative study," Energy, Elsevier, vol. 142(C), pages 559-577.
    8. Jemni, Mohamed Ali & Kassem, Sahar Hadj & Driss, Zied & Abid, Mohamed Salah, 2018. "Effects of hydrogen enrichment and injection location on in-cylinder flow characteristics, performance and emissions of gaseous LPG engine," Energy, Elsevier, vol. 150(C), pages 92-108.
    9. Shu, Gequn & Li, Xiaoning & Tian, Hua & Liang, Xingyu & Wei, Haiqiao & Wang, Xu, 2014. "Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle," Applied Energy, Elsevier, vol. 119(C), pages 204-217.
    10. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Li, Xiaoya & Huang, Guangdai & Chang, Liwen, 2016. "An improved CO2-based transcritical Rankine cycle (CTRC) used for engine waste heat recovery," Applied Energy, Elsevier, vol. 176(C), pages 171-182.
    11. Li, Ligeng & Tian, Hua & Shi, Lingfeng & Wang, Jingyu & Li, Min & Shu, Gequn, 2021. "Adaptive flow assignment for CO2 transcritical power cycle (CTPC): An engine operational profile-based off-design study," Energy, Elsevier, vol. 225(C).
    12. Akcay, Mehmet & Yilmaz, Ilker Turgut & Feyzioglu, Ahmet, 2020. "Effect of hydrogen addition on performance and emission characteristics of a common-rail CI engine fueled with diesel/waste cooking oil biodiesel blends," Energy, Elsevier, vol. 212(C).
    13. Andrzej Soboń & Daniel Słyś & Mariusz Ruszel & Alicja Wiącek, 2021. "Prospects for the Use of Hydrogen in the Armed Forces," Energies, MDPI, vol. 14(21), pages 1-12, October.
    14. Liu, Xinlei & Wang, Hu & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion," Applied Energy, Elsevier, vol. 189(C), pages 187-200.
    15. Simon Drost & Sven Eckart & Chunkan Yu & Robert Schießl & Hartmut Krause & Ulrich Maas, 2023. "Numerical and Experimental Investigations of CH 4 /H 2 Mixtures: Ignition Delay Times, Laminar Burning Velocity and Extinction Limits," Energies, MDPI, vol. 16(6), pages 1-17, March.
    16. Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
    17. Hamdy, Mohamed & Askalany, Ahmed A. & Harby, K. & Kora, Nader, 2015. "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1223-1234.
    18. Kai Yang & Hongguang Zhang & Songsong Song & Jian Zhang & Yuting Wu & Yeqiang Zhang & Hongjin Wang & Ying Chang & Chen Bei, 2014. "Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander," Energies, MDPI, vol. 7(5), pages 1-20, May.
    19. Han, Zhiqiang & Li, Bolun & Tian, Wei & Xia, Qi & Leng, Songpeng, 2019. "Influence of coupling action of oxygenated fuel and gas circuit oxygen on hydrocarbons formation in diesel engine," Energy, Elsevier, vol. 173(C), pages 196-206.
    20. He, Jintao & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Zhang, Yonghao & Zhang, Meiyan & Yao, Yu & Cai, Jinwen & Shu, Gequn, 2022. "Control strategy for a CO2-based combined cooling and power generation system based on heat source and cold sink fluctuations," Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:558-567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.