IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v194y2017icp410-421.html
   My bibliography  Save this article

Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events

Author

Listed:
  • Ramakrishnan, Sayanthan
  • Wang, Xiaoming
  • Sanjayan, Jay
  • Wilson, John

Abstract

Building refurbishment, through incorporating phase change materials (PCMs) into building fabrics, has been considered to be an effective way to reduce the energy consumption and related carbon emission of buildings. At the same time, it can also help to reduce the extreme heatwave risks in non-air-conditioned buildings. This study investigates the potential applications of PCMs to be integrated into buildings to reduce heat stress risks during extreme heatwave periods through numerical simulations. This study uses 2009 weather data of Melbourne, a city that regularly experiences heatwaves in summer. A detached single-storey house, without an active air-conditioning system, is refurbished with the installation of macro-encapsulated Bio-PCM™ mats as inner linings of walls and ceilings. Dynamic thermal simulations have been undertaken to reveal the performance of, and factors that influence, the adoption of PCM to reduce heat stress during heatwave periods. Discomfort index has been used as an indicator for measuring the indoor heat stress risks. The results showed that PCM refurbishment can effectively reduce the indoor heat stress risks, indicating a significant advantage in improving the occupant health and comfort. The selection of suitable phase transition temperature, and amount of PCM, is critical for this application to be effective. Appropriate selection of PCM with better ventilation design could reduce the severe discomfort period by 65% during extreme heatwave conditions. While the thermal energy storage of PCM reduces the indoor heat stress, night ventilation enhances the cool storage of PCM.

Suggested Citation

  • Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events," Applied Energy, Elsevier, vol. 194(C), pages 410-421.
  • Handle: RePEc:eee:appene:v:194:y:2017:i:c:p:410-421
    DOI: 10.1016/j.apenergy.2016.04.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916305451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.04.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Guobing & Yang, Yongping & Wang, Xin & Zhou, Shaoxiang, 2009. "Numerical analysis of effect of shape-stabilized phase change material plates in a building combined with night ventilation," Applied Energy, Elsevier, vol. 86(1), pages 52-59, January.
    2. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    3. Kuznik, Frédéric & Virgone, Joseph, 2009. "Experimental assessment of a phase change material for wall building use," Applied Energy, Elsevier, vol. 86(10), pages 2038-2046, October.
    4. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2013. "Study on performance of energy-efficient retrofitting measures on commercial building external walls in cooling-dominant cities," Applied Energy, Elsevier, vol. 103(C), pages 97-108.
    5. Lei, Jiawei & Yang, Jinglei & Yang, En-Hua, 2016. "Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore," Applied Energy, Elsevier, vol. 162(C), pages 207-217.
    6. Ascione, Fabrizio & Bianco, Nicola & De Masi, Rosa Francesca & de’ Rossi, Filippo & Vanoli, Giuseppe Peter, 2014. "Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season," Applied Energy, Elsevier, vol. 113(C), pages 990-1007.
    7. Zhou, Guobing & Yang, Yongping & Wang, Xin & Cheng, Jinming, 2010. "Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves," Applied Energy, Elsevier, vol. 87(8), pages 2666-2672, August.
    8. Gao, Tao & Jelle, Bjørn Petter & Ihara, Takeshi & Gustavsen, Arild, 2014. "Insulating glazing units with silica aerogel granules: The impact of particle size," Applied Energy, Elsevier, vol. 128(C), pages 27-34.
    9. Zhou, Guobing & Zhang, Yinping & Lin, Kunping & Xiao, Wei, 2008. "Thermal analysis of a direct-gain room with shape-stabilized PCM plates," Renewable Energy, Elsevier, vol. 33(6), pages 1228-1236.
    10. Ramakrishnan, Sayanthan & Sanjayan, Jay & Wang, Xiaoming & Alam, Morshed & Wilson, John, 2015. "A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites," Applied Energy, Elsevier, vol. 157(C), pages 85-94.
    11. Zhou, Guobing & Zhang, Yinping & Zhang, Qunli & Lin, Kunping & Di, Hongfa, 2007. "Performance of a hybrid heating system with thermal storage using shape-stabilized phase-change material plates," Applied Energy, Elsevier, vol. 84(10), pages 1068-1077, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mavrigiannaki, A. & Ampatzi, E., 2016. "Latent heat storage in building elements: A systematic review on properties and contextual performance factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 852-866.
    2. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    3. Mingli Li & Guoqing Gui & Zhibin Lin & Long Jiang & Hong Pan & Xingyu Wang, 2018. "Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings," Sustainability, MDPI, vol. 10(8), pages 1-23, July.
    4. Bimaganbetova, Madina & Memon, Shazim Ali & Sheriyev, Almas, 2020. "Performance evaluation of phase change materials suitable for cities representing the whole tropical savanna climate region," Renewable Energy, Elsevier, vol. 148(C), pages 402-416.
    5. Mi, Xuming & Liu, Ran & Cui, Hongzhi & Memon, Shazim Ali & Xing, Feng & Lo, Yiu, 2016. "Energy and economic analysis of building integrated with PCM in different cities of China," Applied Energy, Elsevier, vol. 175(C), pages 324-336.
    6. Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach," Applied Energy, Elsevier, vol. 207(C), pages 654-664.
    7. Adilkhanova, Indira & Memon, Shazim Ali & Kim, Jong & Sheriyev, Almas, 2021. "A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime," Energy, Elsevier, vol. 217(C).
    8. Lei, Jiawei & Kumarasamy, Karthikeyan & Zingre, Kishor T. & Yang, Jinglei & Wan, Man Pun & Yang, En-Hua, 2017. "Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics," Applied Energy, Elsevier, vol. 190(C), pages 57-63.
    9. Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
    10. Ye, Hong & Long, Linshuang & Zhang, Haitao & Zou, Ruqiang, 2014. "The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index," Applied Energy, Elsevier, vol. 113(C), pages 1118-1126.
    11. Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    12. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM energy storage in combination with night ventilation for space cooling," Applied Energy, Elsevier, vol. 158(C), pages 412-421.
    13. Cao, Lei & Su, Di & Tang, Yaojie & Fang, Guiyin & Tang, Fang, 2015. "Properties evaluation and applications of thermal energystorage materials in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 500-522.
    14. Jin, Xing & Medina, Mario A. & Zhang, Xiaosong, 2014. "On the placement of a phase change material thermal shield within the cavity of buildings walls for heat transfer rate reduction," Energy, Elsevier, vol. 73(C), pages 780-786.
    15. Zeyad Amin Al-Absi & Mohd Isa Mohd Hafizal & Mazran Ismail & Azhar Ghazali, 2021. "Towards Sustainable Development: Building’s Retrofitting with PCMs to Enhance the Indoor Thermal Comfort in Tropical Climate, Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    16. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2016. "Stable, low-cost phase change material for building applications: The eutectic mixture of decanoic acid and tetradecanoic acid," Applied Energy, Elsevier, vol. 168(C), pages 457-464.
    17. Cheng, Rui & Pomianowski, Michal & Wang, Xin & Heiselberg, Per & Zhang, Yinping, 2013. "A new method to determine thermophysical properties of PCM-concrete brick," Applied Energy, Elsevier, vol. 112(C), pages 988-998.
    18. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    19. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Cabeza, Luisa F., 2017. "Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings," Applied Energy, Elsevier, vol. 202(C), pages 420-434.
    20. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:194:y:2017:i:c:p:410-421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.