IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v190y2017icp1258-1274.html
   My bibliography  Save this article

The redox reaction kinetics of Sinai ore for chemical looping combustion applications

Author

Listed:
  • Ksepko, Ewelina
  • Babiński, Piotr
  • Nalbandian, Lori

Abstract

The objective of this work was to study the use of Sinai ore, a Fe–Mn-based ore from Egypt, as a low-cost oxygen carrier (OC) in Chemical Looping Combustion (CLC). The Sinai ore was selected because it possesses relatively high amounts of iron and manganese oxides. Furthermore, those oxides have low cost, very favorable environmental and thermodynamic properties for the CLC process. The performance of the Sinai ore as an OC in CLC was compared to that of ilmenite (Norway Tellnes mine), the most extensively studied naturally occurring Fe-based mineral.

Suggested Citation

  • Ksepko, Ewelina & Babiński, Piotr & Nalbandian, Lori, 2017. "The redox reaction kinetics of Sinai ore for chemical looping combustion applications," Applied Energy, Elsevier, vol. 190(C), pages 1258-1274.
  • Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:1258-1274
    DOI: 10.1016/j.apenergy.2017.01.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191730034X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.01.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yongxing & Doroodchi, Elham & Moghtaderi, Behdad, 2014. "Chemical looping combustion of ultra low concentration of methane with Fe2O3/Al2O3 and CuO/SiO2," Applied Energy, Elsevier, vol. 113(C), pages 1916-1923.
    2. Wang, Kun & Tian, Xin & Zhao, Haibo, 2016. "Sulfur behavior in chemical-looping combustion using a copper ore oxygen carrier," Applied Energy, Elsevier, vol. 166(C), pages 84-95.
    3. Albrecht, Kevin J. & Jackson, Gregory S. & Braun, Robert J., 2016. "Thermodynamically consistent modeling of redox-stable perovskite oxides for thermochemical energy conversion and storage," Applied Energy, Elsevier, vol. 165(C), pages 285-296.
    4. Huang, Liang & Tang, Mingchen & Fan, Maohong & Cheng, Hansong, 2015. "Density functional theory study on the reaction between hematite and methane during chemical looping process," Applied Energy, Elsevier, vol. 159(C), pages 132-144.
    5. Gu, Zhenhua & Li, Kongzhai & Wang, Hua & Qing, Shan & Zhu, Xing & Wei, Yonggang & Cheng, Xianming & Yu, He & Cao, Yan, 2016. "Bulk monolithic Ce–Zr–Fe–O/Al2O3 oxygen carriers for a fixed bed scheme of the chemical looping combustion: Reactivity of oxygen carrier," Applied Energy, Elsevier, vol. 163(C), pages 19-31.
    6. Källén, Malin & Rydén, Magnus & Lyngfelt, Anders & Mattisson, Tobias, 2015. "Chemical-looping combustion using combined iron/manganese/silicon oxygen carriers," Applied Energy, Elsevier, vol. 157(C), pages 330-337.
    7. Siriwardane, Ranjani V. & Ksepko, Ewelina & Tian, Hanjing & Poston, James & Simonyi, Thomas & Sciazko, Marek, 2013. "Interaction of iron–copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal," Applied Energy, Elsevier, vol. 107(C), pages 111-123.
    8. Ksepko, Ewelina & Sciazko, Marek & Babinski, Piotr, 2014. "Studies on the redox reaction kinetics of Fe2O3–CuO/Al2O3 and Fe2O3/TiO2 oxygen carriers," Applied Energy, Elsevier, vol. 115(C), pages 374-383.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Zhenhua & Zhang, Ling & Lu, Chunqiang & Qing, Shan & Li, Kongzhai, 2020. "Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion," Applied Energy, Elsevier, vol. 277(C).
    2. Samuel Bayham & Ronald Breault & Justin Weber, 2017. "Chemical Looping Combustion of Hematite Ore with Methane and Steam in a Fluidized Bed Reactor," Energies, MDPI, vol. 10(8), pages 1-22, August.
    3. Liu, Shuai & Xiang, Dong & Xu, Ying & Sun, Zhe & Cao, Yan, 2017. "Relationship between electronic properties of Fe3O4 substituted by Ca and Ba and their reactivity in chemical looping process: A first-principles study," Applied Energy, Elsevier, vol. 202(C), pages 550-557.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Xin & Fan, Maohong & Wang, Xingjun & Wang, Yonggang & Argyle, Morris D. & Zhu, Yufei, 2018. "A cost-effective approach to realization of the efficient methane chemical-looping combustion by using coal fly ash as a support for oxygen carrier," Applied Energy, Elsevier, vol. 230(C), pages 393-402.
    2. Akbari-Emadabadi, S. & Rahimpour, M.R. & Hafizi, A. & Keshavarz, P., 2017. "Production of hydrogen-rich syngas using Zr modified Ca-Co bifunctional catalyst-sorbent in chemical looping steam methane reforming," Applied Energy, Elsevier, vol. 206(C), pages 51-62.
    3. Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.
    4. Chang, F.C. & Liao, P.H. & Tsai, C.K. & Hsiao, M.C. & Paul Wang, H., 2014. "Chemical-looping combustion of syngas with nano CuO–NiO on chabazite," Applied Energy, Elsevier, vol. 113(C), pages 1731-1736.
    5. Cheng, Xianming & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Zhouhang & Long, Yanhui & Zheng, Min & Tian, Dong & Wang, Hua, 2018. "Enhanced performance of chemical looping combustion of methane by combining oxygen carriers via optimizing the stacking sequences," Applied Energy, Elsevier, vol. 230(C), pages 696-711.
    6. Iloeje, Chukwunwike O. & Zhao, Zhenlong & Ghoniem, Ahmed F., 2017. "A reduced fidelity model for the rotary chemical looping combustion reactor," Applied Energy, Elsevier, vol. 190(C), pages 725-739.
    7. Huang, Liang & Tang, Mingchen & Fan, Maohong & Cheng, Hansong, 2015. "Density functional theory study on the reaction between hematite and methane during chemical looping process," Applied Energy, Elsevier, vol. 159(C), pages 132-144.
    8. Iloeje, Chukwunwike O. & Zhao, Zhenlong & Ghoniem, Ahmed F., 2018. "Design and techno-economic optimization of a rotary chemical looping combustion power plant with CO2 capture," Applied Energy, Elsevier, vol. 231(C), pages 1179-1190.
    9. Riley, Jarrett & Siriwardane, Ranjani & Tian, Hanjing & Benincosa, William & Poston, James, 2018. "Experimental and kinetic analysis for particle scale modeling of a CuO-Fe2O3-Al2O3 oxygen carrier during reduction with H2 in chemical looping combustion applications," Applied Energy, Elsevier, vol. 228(C), pages 1515-1530.
    10. Gu, Zhenhua & Zhang, Ling & Lu, Chunqiang & Qing, Shan & Li, Kongzhai, 2020. "Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion," Applied Energy, Elsevier, vol. 277(C).
    11. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
    12. Zhu, Min & Chen, Shiyi & Soomro, Ahsanullah & Hu, Jun & Sun, Zhao & Ma, Shiwei & Xiang, Wenguo, 2018. "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation," Applied Energy, Elsevier, vol. 225(C), pages 912-921.
    13. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    14. Zhang, Yongxing & Doroodchi, Elham & Moghtaderi, Behdad, 2014. "Chemical looping combustion of ultra low concentration of methane with Fe2O3/Al2O3 and CuO/SiO2," Applied Energy, Elsevier, vol. 113(C), pages 1916-1923.
    15. Wang, Dechao & Jin, Lijun & Li, Yang & Yao, Demeng & Wang, Jiaofei & Hu, Haoquan, 2018. "Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3," Energy, Elsevier, vol. 162(C), pages 542-553.
    16. Nadgouda, Sourabh G. & Guo, Mengqing & Tong, Andrew & Fan, L.-S., 2019. "High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process," Applied Energy, Elsevier, vol. 235(C), pages 1415-1426.
    17. Gokon, Nobuyuki & Yawata, Takehiro & Bellan, Selvan & Kodama, Tatsuya & Cho, Hyun-Seok, 2019. "Thermochemical behavior of perovskite oxides based on LaxSr1-x(Mn, Fe, Co)O3-δ and BaySr1-yCoO3-δ redox system for thermochemical energy storage at high temperatures," Energy, Elsevier, vol. 171(C), pages 971-980.
    18. Zhang, Shuai & Xiao, Rui & Zheng, Wenguang, 2014. "Comparative study between fluidized-bed and fixed-bed operation modes in pressurized chemical looping combustion of coal," Applied Energy, Elsevier, vol. 130(C), pages 181-189.
    19. Ksepko, Ewelina & Sciazko, Marek & Babinski, Piotr, 2014. "Studies on the redox reaction kinetics of Fe2O3–CuO/Al2O3 and Fe2O3/TiO2 oxygen carriers," Applied Energy, Elsevier, vol. 115(C), pages 374-383.
    20. Su, Shi & Yu, Xinxiang, 2015. "A 25 kWe low concentration methane catalytic combustion gas turbine prototype unit," Energy, Elsevier, vol. 79(C), pages 428-438.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:190:y:2017:i:c:p:1258-1274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.