IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v228y2018icp1515-1530.html
   My bibliography  Save this article

Experimental and kinetic analysis for particle scale modeling of a CuO-Fe2O3-Al2O3 oxygen carrier during reduction with H2 in chemical looping combustion applications

Author

Listed:
  • Riley, Jarrett
  • Siriwardane, Ranjani
  • Tian, Hanjing
  • Benincosa, William
  • Poston, James

Abstract

A kinetic analysis of the H2 reduction of a CuO-Fe2O3-Al2O3 oxygen carrier in gas phase fueled Chemical Looping Combustion of synthesis gas was utilized to derive particle scale representation. An experimentally driven study was carried out to provide an array of operational data sets for kinetic modelling approaches. The impact of key operational variables on the kinetics of the novel oxygen carrier were examined, with emphasis on the application of reliable phenomena driven particle scale models to describe the reduction behavior. Due to the novel nature of the material, a series of experimental studies were carried out to provide a fundamental understanding of how the material changed as oxygen was depleted from the structure due to reduction with H2. This include quantification of the complex mixed metal oxide phase and changes due to lattice oxygen depletion. It was found that H2 reduction occurs in a multistep process where CuFeAlO4 → Cu0+ + FeAl2O4 → Cu0+ + Fe0+ + Al2O3 as oxygen is depleted from the structure. This multistep process was successfully emulated through the use of a two interface Grainy pellet model in which reaction (kinetic) control was the main rate limiting step. This is validated through the examination of other potential rate limiting resistances. The model emulates changes in key operation variables with good accuracy.

Suggested Citation

  • Riley, Jarrett & Siriwardane, Ranjani & Tian, Hanjing & Benincosa, William & Poston, James, 2018. "Experimental and kinetic analysis for particle scale modeling of a CuO-Fe2O3-Al2O3 oxygen carrier during reduction with H2 in chemical looping combustion applications," Applied Energy, Elsevier, vol. 228(C), pages 1515-1530.
  • Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:1515-1530
    DOI: 10.1016/j.apenergy.2018.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918310444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siriwardane, Ranjani & Riley, Jarrett & Bayham, Samuel & Straub, Douglas & Tian, Hanjing & Weber, Justin & Richards, George, 2018. "50-kWth methane/air chemical looping combustion tests with commercially prepared CuO-Fe2O3-alumina oxygen carrier with two different techniques," Applied Energy, Elsevier, vol. 213(C), pages 92-99.
    2. Huang, Liang & Tang, Mingchen & Fan, Maohong & Cheng, Hansong, 2015. "Density functional theory study on the reaction between hematite and methane during chemical looping process," Applied Energy, Elsevier, vol. 159(C), pages 132-144.
    3. Riley, Jarrett & Siriwardane, Ranjani & Tian, Hanjing & Benincosa, William & Poston, James, 2017. "Kinetic analysis of the interactions between calcium ferrite and coal char for chemical looping gasification applications: Identifying reduction routes and modes of oxygen transfer," Applied Energy, Elsevier, vol. 201(C), pages 94-110.
    4. Siriwardane, Ranjani V. & Ksepko, Ewelina & Tian, Hanjing & Poston, James & Simonyi, Thomas & Sciazko, Marek, 2013. "Interaction of iron–copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal," Applied Energy, Elsevier, vol. 107(C), pages 111-123.
    5. Siriwardane, Ranjani & Tian, Hanjing & Miller, Duane & Richards, George, 2015. "Fluidized bed testing of commercially prepared MgO-promoted hematite and CuO–Fe2O3 mixed metal oxide oxygen carriers for methane and coal chemical looping combustion," Applied Energy, Elsevier, vol. 157(C), pages 348-357.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nakano, Anna & Nakano, Jinichiro & Bennett, James, 2020. "Real-time high temperature investigations of an individual natural hematite ore particle for chemical looping oxygen exchange," Applied Energy, Elsevier, vol. 268(C).
    2. Siriwardane, Ranjani & Riley, Jarrett & Atallah, Chris, 2022. "CO2 utilization potential of a novel calcium ferrite based looping process fueled with coal: Experimental evaluation of various coal feedstocks and thermodynamic integrated process analysis," Applied Energy, Elsevier, vol. 323(C).
    3. Krzysztof M. Czajka, 2021. "Gasification of Coal by CO 2 : The Impact of the Heat Transfer Limitation on the Progress, Reaction Rate and Kinetics of the Process," Energies, MDPI, vol. 14(17), pages 1-22, September.
    4. Riley, Jarrett & Siriwardane, Ranjani & Tian, Hanjing & Benincosa, William & Poston, James, 2019. "Particle scale modeling of CuFeAlO4 during reduction with CO in chemical looping applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Benincosa, William & Siriwardane, Ranjani & Tian, Hanjing & Riley, Jarrett & Poston, James, 2020. "A particle-scale reduction model of copper iron manganese oxide with CO for chemical looping combustion," Applied Energy, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benincosa, William & Siriwardane, Ranjani & Tian, Hanjing & Riley, Jarrett & Poston, James, 2020. "A particle-scale reduction model of copper iron manganese oxide with CO for chemical looping combustion," Applied Energy, Elsevier, vol. 262(C).
    2. Siriwardane, Ranjani & Riley, Jarrett & Atallah, Chris, 2022. "CO2 utilization potential of a novel calcium ferrite based looping process fueled with coal: Experimental evaluation of various coal feedstocks and thermodynamic integrated process analysis," Applied Energy, Elsevier, vol. 323(C).
    3. Siriwardane, Ranjani & Riley, Jarrett & Benincosa, William & Bayham, Samuel & Bobek, Michael & Straub, Douglas & Weber, Justin, 2021. "Development of CuFeMnAlO4+δ oxygen carrier with high attrition resistance and 50-kWth methane/air chemical looping combustion tests," Applied Energy, Elsevier, vol. 286(C).
    4. Siriwardane, Ranjani & Riley, Jarrett & Bayham, Samuel & Straub, Douglas & Tian, Hanjing & Weber, Justin & Richards, George, 2018. "50-kWth methane/air chemical looping combustion tests with commercially prepared CuO-Fe2O3-alumina oxygen carrier with two different techniques," Applied Energy, Elsevier, vol. 213(C), pages 92-99.
    5. Ksepko, Ewelina & Babiński, Piotr & Nalbandian, Lori, 2017. "The redox reaction kinetics of Sinai ore for chemical looping combustion applications," Applied Energy, Elsevier, vol. 190(C), pages 1258-1274.
    6. Benincosa, William & Siriwardane, Ranjani & Tian, Hanjing & Riley, Jarrett, 2017. "Unique phase identification of trimetallic copper iron manganese oxygen carrier using simultaneous differential scanning calorimetry/thermogravimetric analysis during chemical looping combustion react," Applied Energy, Elsevier, vol. 203(C), pages 522-534.
    7. Fredrik Hildor & Henrik Leion & Tobias Mattisson, 2022. "Steel Converter Slag as an Oxygen Carrier—Interaction with Sulfur Dioxide," Energies, MDPI, vol. 15(16), pages 1-29, August.
    8. Lin, Shen & Gu, Zhenhua & Zhu, Xing & Wei, Yonggang & Long, Yanhui & Yang, Kun & He, Fang & Wang, Hua & Li, Kongzhai, 2020. "Synergy of red mud oxygen carrier with MgO and NiO for enhanced chemical-looping combustion," Energy, Elsevier, vol. 197(C).
    9. Siriwardane, Ranjani & Benincosa, William & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier," Applied Energy, Elsevier, vol. 183(C), pages 1550-1564.
    10. Riley, Jarrett & Siriwardane, Ranjani & Tian, Hanjing & Benincosa, William & Poston, James, 2019. "Particle scale modeling of CuFeAlO4 during reduction with CO in chemical looping applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Lei, Zhiping & Yan, Jingchong & Fang, Jia & Shui, Hengfu & Ren, Shibiao & Wang, Zhicai & Li, Zhanku & Kong, Ying & Kang, Shigang, 2021. "Catalytic combustion of coke and NO reduction in-situ under the action of Fe, Fe–CaO and Fe–CeO2," Energy, Elsevier, vol. 216(C).
    12. Lu, Xuao & Rahman, Ryad A. & Lu, Dennis Y. & Ridha, Firas N. & Duchesne, Marc A. & Tan, Yewen & Hughes, Robin W., 2016. "Pressurized chemical looping combustion with CO: Reduction reactivity and oxygen-transport capacity of ilmenite ore," Applied Energy, Elsevier, vol. 184(C), pages 132-139.
    13. Görke, R.H. & Hu, W. & Dunstan, M.T. & Dennis, J.S. & Scott, S.A., 2018. "Exploration of the material property space for chemical looping air separation applied to carbon capture and storage," Applied Energy, Elsevier, vol. 212(C), pages 478-488.
    14. Cerciello, Francesca & Coppola, Antonio & Lacovig, Paolo & Senneca, Osvalda & Salatino, Piero, 2021. "Characterization of surface-oxides on char under periodically changing oxidation/desorption conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Ridha, Firas N. & Duchesne, Marc A. & Lu, Xuao & Lu, Dennis Y. & Filippou, Dimitrios & Hughes, Robin W., 2016. "Characterization of an ilmenite ore for pressurized chemical looping combustion," Applied Energy, Elsevier, vol. 163(C), pages 323-333.
    16. Zhu, Min & Chen, Shiyi & Soomro, Ahsanullah & Hu, Jun & Sun, Zhao & Ma, Shiwei & Xiang, Wenguo, 2018. "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation," Applied Energy, Elsevier, vol. 225(C), pages 912-921.
    17. Miller, Duane D. & Siriwardane, Ranjani, 2018. "CaFe2O4 oxygen carrier characterization during the partial oxidation of coal in the chemical looping gasification application," Applied Energy, Elsevier, vol. 224(C), pages 708-716.
    18. Zhang, Yongxing & Doroodchi, Elham & Moghtaderi, Behdad, 2014. "Chemical looping combustion of ultra low concentration of methane with Fe2O3/Al2O3 and CuO/SiO2," Applied Energy, Elsevier, vol. 113(C), pages 1916-1923.
    19. Wang, Dechao & Jin, Lijun & Li, Yang & Yao, Demeng & Wang, Jiaofei & Hu, Haoquan, 2018. "Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3," Energy, Elsevier, vol. 162(C), pages 542-553.
    20. Nadgouda, Sourabh G. & Guo, Mengqing & Tong, Andrew & Fan, L.-S., 2019. "High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process," Applied Energy, Elsevier, vol. 235(C), pages 1415-1426.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:228:y:2018:i:c:p:1515-1530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.