IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v183y2016icp278-289.html
   My bibliography  Save this article

Integrated computation model of lithium-ion battery subject to nail penetration

Author

Listed:
  • Liu, Binghe
  • Yin, Sha
  • Xu, Jun

Abstract

The nail penetration of lithium-ion batteries (LIBs) has become a standard battery safety evaluation method to mimic the potential penetration of a foreign object into LIB, which can lead to internal short circuit with catastrophic consequences, such as thermal runaway, fire, and explosion. To provide a safe, time-efficient, and cost-effective method for studying the nail penetration problem, an integrated computational method that considers the mechanical, electrochemical, and thermal behaviors of the jellyroll was developed using a coupled 3D mechanical model, a 1D battery model, and a short circuit model. The integrated model, along with the sub-models, was validated to agree reasonably well with experimental test data. In addition, a comprehensive quantitative analysis of governing factors, e.g., shapes, sizes, and displacements of nails, states of charge, and penetration speeds, was conducted. The proposed computational framework for LIB nail penetration was first introduced. This framework can provide an accurate prediction of the time history profile of battery voltage, temperature, and mechanical behavior. The factors that affected the behavior of the jellyroll under nail penetration were discussed systematically. Results provide a solid foundation for future in-depth studies on LIB nail penetration mechanisms and safety design.

Suggested Citation

  • Liu, Binghe & Yin, Sha & Xu, Jun, 2016. "Integrated computation model of lithium-ion battery subject to nail penetration," Applied Energy, Elsevier, vol. 183(C), pages 278-289.
  • Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:278-289
    DOI: 10.1016/j.apenergy.2016.08.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916311990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ping, Ping & Wang, Qingsong & Huang, Peifeng & Sun, Jinhua & Chen, Chunhua, 2014. "Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method," Applied Energy, Elsevier, vol. 129(C), pages 261-273.
    2. Xu, Jun & Liu, Binghe & Wang, Xinyi & Hu, Dayong, 2016. "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, Elsevier, vol. 172(C), pages 180-189.
    3. Chao-Yang Wang & Guangsheng Zhang & Shanhai Ge & Terrence Xu & Yan Ji & Xiao-Guang Yang & Yongjun Leng, 2016. "Lithium-ion battery structure that self-heats at low temperatures," Nature, Nature, vol. 529(7587), pages 515-518, January.
    4. Wang, Tao & Tseng, K.J. & Zhao, Jiyun & Wei, Zhongbao, 2014. "Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies," Applied Energy, Elsevier, vol. 134(C), pages 229-238.
    5. An, Tae-Ho & Choi, Soon-Mok & Kim, Il-Ho & Kim, Sun-Uk & Seo, Won-Seon & Kim, Jong-Young & Park, Chan, 2012. "Thermoelectric properties of a doped Mg2Sn system," Renewable Energy, Elsevier, vol. 42(C), pages 23-27.
    6. Amer Hammami & Nathalie Raymond & Michel Armand, 2003. "Runaway risk of forming toxic compounds," Nature, Nature, vol. 424(6949), pages 635-636, August.
    7. Rao, Zhonghao & Wang, Qingchao & Huang, Congliang, 2016. "Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system," Applied Energy, Elsevier, vol. 164(C), pages 659-669.
    8. Yan Zhou & Michael Wang & Han Hao & Larry Johnson & Hewu Wang & Han Hao, 2015. "Plug-in electric vehicle market penetration and incentives: a global review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(5), pages 777-795, June.
    9. Feng, Xuning & He, Xiangming & Ouyang, Minggao & Lu, Languang & Wu, Peng & Kulp, Christian & Prasser, Stefan, 2015. "Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery," Applied Energy, Elsevier, vol. 154(C), pages 74-91.
    10. Feng, Xuning & Weng, Caihao & Ouyang, Minggao & Sun, Jing, 2016. "Online internal short circuit detection for a large format lithium ion battery," Applied Energy, Elsevier, vol. 161(C), pages 168-180.
    11. Miranda, D. & Costa, C.M. & Almeida, A.M. & Lanceros-Méndez, S., 2016. "Computer simulations of the influence of geometry in the performance of conventional and unconventional lithium-ion batteries," Applied Energy, Elsevier, vol. 165(C), pages 318-328.
    12. Zhao, Rui & Liu, Jie & Gu, Junjie, 2016. "Simulation and experimental study on lithium ion battery short circuit," Applied Energy, Elsevier, vol. 173(C), pages 29-39.
    13. Ling, Ziye & Wang, Fangxian & Fang, Xiaoming & Gao, Xuenong & Zhang, Zhengguo, 2015. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling," Applied Energy, Elsevier, vol. 148(C), pages 403-409.
    14. Merlin, Kevin & Delaunay, Didier & Soto, Jérôme & Traonvouez, Luc, 2016. "Heat transfer enhancement in latent heat thermal storage systems: Comparative study of different solutions and thermal contact investigation between the exchanger and the PCM," Applied Energy, Elsevier, vol. 166(C), pages 107-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yang & Xing, Kai & Yan, Minyue & Zhu, Xun & Ye, Dingding & Chen, Rong & Liao, Qiang, 2023. "A potential flexible fuel cell with dual-functional hydrogel based on multi-component crosslinked hybrid polyvinyl alcohol," Energy, Elsevier, vol. 265(C).
    2. Yasir Ali & Imran Shah & Tariq Amin Khan & Noman Iqbal, 2023. "A Multiphysics-Multiscale Model for Particle–Binder Interactions in Electrode of Lithium-Ion Batteries," Energies, MDPI, vol. 16(15), pages 1-15, August.
    3. Huang, Zonghou & Zhao, Chunpeng & Li, Huang & Peng, Wen & Zhang, Zheng & Wang, Qingsong, 2020. "Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes," Energy, Elsevier, vol. 205(C).
    4. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Akash Samanta & Sheldon S. Williamson, 2021. "A Comprehensive Review of Lithium-Ion Cell Temperature Estimation Techniques Applicable to Health-Conscious Fast Charging and Smart Battery Management Systems," Energies, MDPI, vol. 14(18), pages 1-25, September.
    6. JiYang Xu & Jian Ma & Xuan Zhao & Hao Chen & Bin Xu & XueQin Wu, 2020. "Detection Technology for Battery Safety in Electric Vehicles: A Review," Energies, MDPI, vol. 13(18), pages 1-19, September.
    7. Li, Honggang & Zhou, Dian & Zhang, Meihe & Liu, Binghe & Zhang, Chao, 2023. "Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse," Energy, Elsevier, vol. 263(PE).
    8. Genwei Wang & Xuanfu Guo & Jingyi Chen & Pengfei Han & Qiliang Su & Meiqing Guo & Bin Wang & Hui Song, 2023. "Safety Performance and Failure Criteria of Lithium-Ion Batteries under Mechanical Abuse," Energies, MDPI, vol. 16(17), pages 1-25, September.
    9. Jingyi Chen & Genwei Wang & Hui Song & Bin Wang & Guiying Wu & Jianyin Lei, 2022. "Stress and Displacement of Cylindrical Lithium-Ion Power Battery during Charging and Discharging," Energies, MDPI, vol. 15(21), pages 1-22, November.
    10. Ren, Dongsheng & Feng, Xuning & Lu, Languang & He, Xiangming & Ouyang, Minggao, 2019. "Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions," Applied Energy, Elsevier, vol. 250(C), pages 323-332.
    11. Dafen Chen & Jiuchun Jiang & Xue Li & Zhanguo Wang & Weige Zhang, 2016. "Modeling of a Pouch Lithium Ion Battery Using a Distributed Parameter Equivalent Circuit for Internal Non-Uniformity Analysis," Energies, MDPI, vol. 9(11), pages 1-18, October.
    12. Li, Xiaoyu & Zhang, Zuguang & Wang, Wenhui & Tian, Yong & Li, Dong & Tian, Jindong, 2020. "Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis," Applied Energy, Elsevier, vol. 262(C).
    13. Meng, Lingyu & See, K.W. & Wang, Guofa & Wang, Yunpeng & Zhang, Yong & Zang, Caiyun & Xie, Bin, 2022. "Explosion-proof lithium-ion battery pack – In-depth investigation and experimental study on the design criteria," Energy, Elsevier, vol. 249(C).
    14. Wenwei, Wang & Yiding, Li & Cheng, Lin & Yuefeng, Su & Sheng, Yang, 2019. "State of charge-dependent failure prediction model for cylindrical lithium-ion batteries under mechanical abuse," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Wang, Lubing & Li, Jianping & Chen, Jiaying & Duan, Xudong & Li, Binqi & Li, Jiani, 2023. "Revealing the internal short circuit mechanisms in lithium-ion batteries upon dynamic loading based on multiphysics simulation," Applied Energy, Elsevier, vol. 351(C).
    16. Chen, Haodong & Kalamaras, Evangelos & Abaza, Ahmed & Tripathy, Yashraj & Page, Jason & Barai, Anup, 2023. "Comprehensive analysis of thermal runaway and rupture of lithium-ion batteries under mechanical abuse conditions," Applied Energy, Elsevier, vol. 349(C).
    17. Qingxia Yang & Jun Xu & Binggang Cao & Xiuqing Li, 2017. "A simplified fractional order impedance model and parameter identification method for lithium-ion batteries," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-13, February.
    18. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    19. Pan, Yongjun & Zhang, Xiaoxi & Liu, Yue & Wang, Huacui & Cao, Yangzheng & Liu, Xin & Liu, Binghe, 2022. "Dynamic behavior prediction of modules in crushing via FEA-DNN technique for durable battery-pack system design," Applied Energy, Elsevier, vol. 322(C).
    20. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    2. Zhao, Rui & Liu, Jie & Gu, Junjie, 2016. "Simulation and experimental study on lithium ion battery short circuit," Applied Energy, Elsevier, vol. 173(C), pages 29-39.
    3. Chen, Zeyu & Xiong, Rui & Tian, Jinpeng & Shang, Xiong & Lu, Jiahuan, 2016. "Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles," Applied Energy, Elsevier, vol. 184(C), pages 365-374.
    4. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    5. Xu, Jun & Liu, Binghe & Wang, Xinyi & Hu, Dayong, 2016. "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, Elsevier, vol. 172(C), pages 180-189.
    6. Chen, Zeyu & Zhang, Bo & Xiong, Rui & Shen, Weixiang & Yu, Quanqing, 2021. "Electro-thermal coupling model of lithium-ion batteries under external short circuit," Applied Energy, Elsevier, vol. 293(C).
    7. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    9. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    10. Liu, Lishuo & Feng, Xuning & Zhang, Mingxuan & Lu, Languang & Han, Xuebing & He, Xiangming & Ouyang, Minggao, 2020. "Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries," Applied Energy, Elsevier, vol. 259(C).
    11. Akula, Rajesh & Balaji, C., 2022. "Thermal management of 18650 Li-ion battery using novel fins–PCM–EG composite heat sinks," Applied Energy, Elsevier, vol. 316(C).
    12. Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    14. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Noelle, Daniel J. & Wang, Meng & Le, Anh V. & Shi, Yang & Qiao, Yu, 2018. "Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting," Applied Energy, Elsevier, vol. 212(C), pages 796-808.
    16. Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
    17. Ibrahim, Amier & Jiang, Fangming, 2021. "The electric vehicle energy management: An overview of the energy system and related modeling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Zhu, Juner & Zhang, Xiaowei & Luo, Hailing & Sahraei, Elham, 2018. "Investigation of the deformation mechanisms of lithium-ion battery components using in-situ micro tests," Applied Energy, Elsevier, vol. 224(C), pages 251-266.
    19. Ren, Dongsheng & Feng, Xuning & Lu, Languang & He, Xiangming & Ouyang, Minggao, 2019. "Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions," Applied Energy, Elsevier, vol. 250(C), pages 323-332.
    20. Lv, Youfu & Yang, Xiaoqing & Li, Xinxi & Zhang, Guoqing & Wang, Ziyuan & Yang, Chengzhao, 2016. "Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins," Applied Energy, Elsevier, vol. 178(C), pages 376-382.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:183:y:2016:i:c:p:278-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.