IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v179y2016icp329-337.html
   My bibliography  Save this article

Experimental investigation of CO2 separation by adsorption methods in natural gas purification

Author

Listed:
  • Chen, S.J.
  • Fu, Y.
  • Huang, Y.X.
  • Tao, Z.C.
  • Zhu, M.

Abstract

CO2 separation for natural gas purification by the adsorption method was studied in detail using volumetric adsorption apparatus. The crystalline phase and microstructure of the experimental sample were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Micromeritics ASAP 2020 instrument. The XRD pattern proves that the experimental sample consists of 13X zeolites. The SEM images show that the 13X zeolites expose a large number of micro-channels on the surface of the particles. The microporous volume is 0.22cm3(STP)/g. The ideal swing frequency for the adsorption tank can improve the adsorption performance of an adsorbent compared with a static adsorption tank. The pure CO2 adsorption experimental data agrees well with the extended Langmuir model. The Langmuir-Freundlich model correlates the CO2/CH4 mixture adsorption experimental data fairly well. The relative errors between the simulated results and the experimental data are very little, which indicates that these fitted models are correct. The average selectivity of CO2/CH4 in a static and swing adsorption tank are, respectively, 3.57 and 3.93, considerably higher than 1, indicating preferential CO2 adsorption over CH4 in CO2/CH4 mixtures. This also shows that the swing can improve CO2 separation for natural gas purification. For the three types of motion status, the temperature of the adsorption tank increased in the order swing 2>swing1>static state for pure CO2 adsorption in 13X zeolites. The temperature variation decreased as the pressure increased. The amplitude and time of temperature variations in the adsorption tank can explain the adsorption capacity and adsorption speed. This research will improve the efficiency of offshore natural gas exploitation, and will affect the optimization of energy structures.

Suggested Citation

  • Chen, S.J. & Fu, Y. & Huang, Y.X. & Tao, Z.C. & Zhu, M., 2016. "Experimental investigation of CO2 separation by adsorption methods in natural gas purification," Applied Energy, Elsevier, vol. 179(C), pages 329-337.
  • Handle: RePEc:eee:appene:v:179:y:2016:i:c:p:329-337
    DOI: 10.1016/j.apenergy.2016.06.146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916309345
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aguilera, Roberto F., 2014. "The role of natural gas in a low carbon Asia Pacific," Applied Energy, Elsevier, vol. 113(C), pages 1795-1800.
    2. Zhao, Guoying & Aziz, Baroz & Hedin, Niklas, 2010. "Carbon dioxide adsorption on mesoporous silica surfaces containing amine-like motifs," Applied Energy, Elsevier, vol. 87(9), pages 2907-2913, September.
    3. Zhang, Qi & Li, Zhan & Wang, Ge & Li, Hailong, 2016. "Study on the impacts of natural gas supply cost on gas flow and infrastructure deployment in China," Applied Energy, Elsevier, vol. 162(C), pages 1385-1398.
    4. Hedin, Niklas & Andersson, Linnéa & Bergström, Lennart & Yan, Jinyue, 2013. "Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption," Applied Energy, Elsevier, vol. 104(C), pages 418-433.
    5. Wang, Weilong & Li, Jiang & Wei, Xiaolan & Ding, Jing & Feng, Haijun & Yan, Jinyue & Yang, Jianping, 2015. "Carbon dioxide adsorption thermodynamics and mechanisms on MCM-41 supported polyethylenimine prepared by wet impregnation method," Applied Energy, Elsevier, vol. 142(C), pages 221-228.
    6. Cheung, Ocean & Bacsik, Zoltán & Liu, Qingling & Mace, Amber & Hedin, Niklas, 2013. "Adsorption kinetics for CO2 on highly selective zeolites NaKA and nano-NaKA," Applied Energy, Elsevier, vol. 112(C), pages 1326-1336.
    7. Gao, Cuixia & Sun, Mei & Shen, Bo & Li, Ranran & Tian, Lixin, 2014. "Optimization of China's energy structure based on portfolio theory," Energy, Elsevier, vol. 77(C), pages 890-897.
    8. Jin, Hongguang & Gao, Lin & Han, Wei & Hong, Hui, 2010. "Prospect options of CO2 capture technology suitable for China," Energy, Elsevier, vol. 35(11), pages 4499-4506.
    9. Su, Fengsheng & Lu, Chungsying & Chung, Ai-Ju & Liao, Chien-Hsiang, 2014. "CO2 capture with amine-loaded carbon nanotubes via a dual-column temperature/vacuum swing adsorption," Applied Energy, Elsevier, vol. 113(C), pages 706-712.
    10. Demierre, Jonathan & Bazilian, Morgan & Carbajal, Jonathan & Sherpa, Shaky & Modi, Vijay, 2015. "Potential for regional use of East Africa’s natural gas," Applied Energy, Elsevier, vol. 143(C), pages 414-436.
    11. Li, Bao-Hong & Zhang, Nan & Smith, Robin, 2016. "Simulation and analysis of CO2 capture process with aqueous monoethanolamine solution," Applied Energy, Elsevier, vol. 161(C), pages 707-717.
    12. Raganati, F. & Ammendola, P. & Chirone, R., 2014. "CO2 adsorption on fine activated carbon in a sound assisted fluidized bed: Effect of sound intensity and frequency, CO2 partial pressure and fluidization velocity," Applied Energy, Elsevier, vol. 113(C), pages 1269-1282.
    13. Zhang, Xiaochun & Myhrvold, Nathan P. & Hausfather, Zeke & Caldeira, Ken, 2016. "Climate benefits of natural gas as a bridge fuel and potential delay of near-zero energy systems," Applied Energy, Elsevier, vol. 167(C), pages 317-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emanuele Bonamente & Andrea Aquino & Andrea Nicolini & Franco Cotana, 2016. "Experimental Analysis and Process Modeling of Carbon Dioxide Removal Using Tuff," Sustainability, MDPI, vol. 8(12), pages 1-15, December.
    2. Song, Chunfeng & Liu, Qingling & Ji, Na & Deng, Shuai & Zhao, Jun & Kitamura, Yutaka, 2017. "Natural gas purification by heat pump assisted MEA absorption process," Applied Energy, Elsevier, vol. 204(C), pages 353-361.
    3. Chen, S.J. & Zhu, M. & Fu, Y. & Huang, Y.X. & Tao, Z.C. & Li, W.L., 2017. "Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas," Applied Energy, Elsevier, vol. 191(C), pages 87-98.
    4. Chen, S.J. & Tao, Z.C. & Fu, Y. & Zhu, M. & Li, W.L. & Li, X.D., 2017. "CO2 separation from offshore natural gas in quiescent and flowing states using 13X zeolite," Applied Energy, Elsevier, vol. 205(C), pages 1435-1446.
    5. Lu, Peng & Sun, Jian & Shen, Dongming & Yang, Ruiqin & Xing, Chuang & Lu, Chengxue & Tsubaki, Noritatsu & Shan, Shengdao, 2018. "Direct syngas conversion to liquefied petroleum gas: Importance of a multifunctional metal-zeolite interface," Applied Energy, Elsevier, vol. 209(C), pages 1-7.
    6. Pal, Animesh & Uddin, Kutub & Saha, Bidyut Baran & Thu, Kyaw & Kil, Hyun-Sig & Yoon, Seong-Ho & Miyawaki, Jin, 2020. "A benchmark for CO2 uptake onto newly synthesized biomass-derived activated carbons," Applied Energy, Elsevier, vol. 264(C).
    7. Xie, Yujiao & Björkmalm, Johanna & Ma, Chunyan & Willquist, Karin & Yngvesson, Johan & Wallberg, Ola & Ji, Xiaoyan, 2018. "Techno-economic evaluation of biogas upgrading using ionic liquids in comparison with industrially used technology in Scandinavian anaerobic digestion plants," Applied Energy, Elsevier, vol. 227(C), pages 742-750.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, S.J. & Tao, Z.C. & Fu, Y. & Zhu, M. & Li, W.L. & Li, X.D., 2017. "CO2 separation from offshore natural gas in quiescent and flowing states using 13X zeolite," Applied Energy, Elsevier, vol. 205(C), pages 1435-1446.
    2. Chen, S.J. & Zhu, M. & Fu, Y. & Huang, Y.X. & Tao, Z.C. & Li, W.L., 2017. "Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas," Applied Energy, Elsevier, vol. 191(C), pages 87-98.
    3. Wang, Mei & Yao, Liwen & Wang, Jitong & Zhang, Zixiao & Qiao, Wenming & Long, Donghui & Ling, Licheng, 2016. "Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 168(C), pages 282-290.
    4. Ganapathy, Harish & Steinmayer, Sascha & Shooshtari, Amir & Dessiatoun, Serguei & Ohadi, Michael M. & Alshehhi, Mohamed, 2016. "Process intensification characteristics of a microreactor absorber for enhanced CO2 capture," Applied Energy, Elsevier, vol. 162(C), pages 416-427.
    5. Ganapathy, H. & Shooshtari, A. & Dessiatoun, S. & Alshehhi, M. & Ohadi, M., 2014. "Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor," Applied Energy, Elsevier, vol. 119(C), pages 43-56.
    6. Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
    7. Kong, Yong & Shen, Xiaodong & Cui, Sheng & Fan, Maohong, 2015. "Development of monolithic adsorbent via polymeric sol–gel process for low-concentration CO2 capture," Applied Energy, Elsevier, vol. 147(C), pages 308-317.
    8. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
    9. Jiang, L. & Gonzalez-Diaz, A. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2019. "Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption," Applied Energy, Elsevier, vol. 245(C), pages 1-15.
    10. Liu, Liuchen & Zhu, Tong & Pan, Yu & Wang, Hai, 2017. "Multiple energy complementation based on distributed energy systems – Case study of Chongming county, China," Applied Energy, Elsevier, vol. 192(C), pages 329-336.
    11. Pal, Animesh & Uddin, Kutub & Saha, Bidyut Baran & Thu, Kyaw & Kil, Hyun-Sig & Yoon, Seong-Ho & Miyawaki, Jin, 2020. "A benchmark for CO2 uptake onto newly synthesized biomass-derived activated carbons," Applied Energy, Elsevier, vol. 264(C).
    12. Jiang, Bingbing & Wang, Xianfeng & Gray, McMahan L. & Duan, Yuhua & Luebke, David & Li, Bingyun, 2013. "Development of amino acid and amino acid-complex based solid sorbents for CO2 capture," Applied Energy, Elsevier, vol. 109(C), pages 112-118.
    13. Zhao, Ruikai & Liu, Longcheng & Zhao, Li & Deng, Shuai & Li, Shuangjun & Zhang, Yue, 2019. "A comprehensive performance evaluation of temperature swing adsorption for post-combustion carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Esmaeili, Faezeh & Gholami, Mohsen & Hojjat, Mohammad, 2019. "Accelerated CO2 capture on adsorbent coated finned tube: An experimental study," Energy, Elsevier, vol. 187(C).
    15. Vadim Fetisov & Adam M. Gonopolsky & Maria Yu. Zemenkova & Schipachev Andrey & Hadi Davardoost & Amir H. Mohammadi & Masoud Riazi, 2023. "On the Integration of CO 2 Capture Technologies for an Oil Refinery," Energies, MDPI, vol. 16(2), pages 1-19, January.
    16. Hu, Xiayi (Eric) & Liu, Libin & Luo, Xiao & Xiao, Gongkui & Shiko, Elenica & Zhang, Rui & Fan, Xianfeng & Zhou, Yefeng & Liu, Yang & Zeng, Zhaogang & Li, Chao'en, 2020. "A review of N-functionalized solid adsorbents for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 260(C).
    17. Wang, Meihong & Joel, Atuman S. & Ramshaw, Colin & Eimer, Dag & Musa, Nuhu M., 2015. "Process intensification for post-combustion CO2 capture with chemical absorption: A critical review," Applied Energy, Elsevier, vol. 158(C), pages 275-291.
    18. Pan, Lingying & Liu, Pei & Li, Zheng, 2017. "A system dynamic analysis of China’s oil supply chain: Over-capacity and energy security issues," Applied Energy, Elsevier, vol. 188(C), pages 508-520.
    19. Qasem, Naef A.A. & Ben-Mansour, Rached, 2018. "Energy and productivity efficient vacuum pressure swing adsorption process to separate CO2 from CO2/N2 mixture using Mg-MOF-74: A CFD simulation," Applied Energy, Elsevier, vol. 209(C), pages 190-202.
    20. Zhang, Qi & Li, Zhan & Wang, Ge & Li, Hailong, 2016. "Study on the impacts of natural gas supply cost on gas flow and infrastructure deployment in China," Applied Energy, Elsevier, vol. 162(C), pages 1385-1398.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:179:y:2016:i:c:p:329-337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.