IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v170y2016icp116-129.html
   My bibliography  Save this article

Characterisation of stormwater in biomass-fired combined heat and power plants – Impact of biomass fuel storage

Author

Listed:
  • Larsson, Magnus
  • Yan, Jinying
  • Nordenskjöld, Carl
  • Forsberg, Kerstin
  • Liu, Longcheng

Abstract

Characteristics of stormwater in industrial areas are evaluated, specifically based on a biomass-fired combined heat and power (CHP) plant with on-site biomass fuel storage. An evaluation method is developed to combine general methodology applied for stormwater characterisation with the on-site features of the biomass-fired CHP plant. Investigations were carried out through on-site monitoring and laboratory experiments with the defined methodology. Recycled wood chips as biomass fuel currently used in Swedish biomass-fired CHP plants have been used as an example for this study. The impacts of outdoor biomass fuel storage have been analysed for both runoff water quantity and quality. The results indicate that the properties of stored biomass fuels will significantly affect the runoff quantity by its water absorption capability. The overall runoff quality is highly depended on precipitation intensity and the runoff volume from the biomass storage piles, which is influenced by the water retention capacity and leaching ability of biomass fuels. The practical data and information presented in this paper can be used to understand the principal issues and the most important factors for internal control of contamination sources in order to achieve sustainable Energy–Water systems for bioenergy conversion in biomass-fired CHP plants.

Suggested Citation

  • Larsson, Magnus & Yan, Jinying & Nordenskjöld, Carl & Forsberg, Kerstin & Liu, Longcheng, 2016. "Characterisation of stormwater in biomass-fired combined heat and power plants – Impact of biomass fuel storage," Applied Energy, Elsevier, vol. 170(C), pages 116-129.
  • Handle: RePEc:eee:appene:v:170:y:2016:i:c:p:116-129
    DOI: 10.1016/j.apenergy.2016.02.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916302574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.02.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viana, H. & Cohen, Warren B. & Lopes, D. & Aranha, J., 2010. "Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal," Applied Energy, Elsevier, vol. 87(8), pages 2551-2560, August.
    2. Arent, Doug & Pless, Jacquelyn & Mai, Trieu & Wiser, Ryan & Hand, Maureen & Baldwin, Sam & Heath, Garvin & Macknick, Jordan & Bazilian, Morgan & Schlosser, Adam & Denholm, Paul, 2014. "Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply," Applied Energy, Elsevier, vol. 123(C), pages 368-377.
    3. Ericsson, Karin & Huttunen, Suvi & Nilsson, L.J.Lars J. & Svenningsson, Per, 2004. "Bioenergy policy and market development in Finland and Sweden," Energy Policy, Elsevier, vol. 32(15), pages 1707-1721, October.
    4. Lubega, William N. & Farid, Amro M., 2014. "Quantitative engineering systems modeling and analysis of the energy–water nexus," Applied Energy, Elsevier, vol. 135(C), pages 142-157.
    5. DeNooyer, Tyler A. & Peschel, Joshua M. & Zhang, Zhenxing & Stillwell, Ashlynn S., 2016. "Integrating water resources and power generation: The energy–water nexus in Illinois," Applied Energy, Elsevier, vol. 162(C), pages 363-371.
    6. McIlveen-Wright, David R. & Huang, Ye & Rezvani, Sina & Redpath, David & Anderson, Mark & Dave, Ashok & Hewitt, Neil J., 2013. "A technical and economic analysis of three large scale biomass combustion plants in the UK," Applied Energy, Elsevier, vol. 112(C), pages 396-404.
    7. Martin, C. & Ruperd, Y. & Legret, M., 2007. "Urban stormwater drainage management: The development of a multicriteria decision aid approach for best management practices," European Journal of Operational Research, Elsevier, vol. 181(1), pages 338-349, August.
    8. Duić, Neven & Guzović, Zvonimir & Kafarov, Vyatcheslav & Klemeš, Jiří Jaromír & Mathiessen, Brian vad & Yan, Jinyue, 2013. "Sustainable development of energy, water and environment systems," Applied Energy, Elsevier, vol. 101(C), pages 3-5.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaohong & Qi, Yan & Wang, Yanqing & Wu, Jun & Lin, Lili & Peng, Hong & Qi, Hui & Yu, Xiaoyu & Zhang, Yanzong, 2016. "Effect of the tap water supply system on China's economy and energy consumption, and its emissions’ impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 660-671.
    2. Kim, Junbeum & Guillaume, Bertrand & Chung, Jinwook & Hwang, Yongwoo, 2015. "Critical and precious materials consumption and requirement in wind energy system in the EU 27," Applied Energy, Elsevier, vol. 139(C), pages 327-334.
    3. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2015. "Exploring the water-energy nexus in Brazil: The electricity use for water supply," Energy, Elsevier, vol. 85(C), pages 415-432.
    4. Jing Liu & Yongping Li & Guohe Huang & Cai Suo & Shuo Yin, 2017. "An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems," Energies, MDPI, vol. 10(11), pages 1-23, November.
    5. Duan, Cuncun & Chen, Bin, 2017. "Energy–water nexus of international energy trade of China," Applied Energy, Elsevier, vol. 194(C), pages 725-734.
    6. DeNooyer, Tyler A. & Peschel, Joshua M. & Zhang, Zhenxing & Stillwell, Ashlynn S., 2016. "Integrating water resources and power generation: The energy–water nexus in Illinois," Applied Energy, Elsevier, vol. 162(C), pages 363-371.
    7. Azofra, D. & Martínez, E. & Jiménez, E. & Blanco, J. & Saenz-Díez, J.C., 2014. "Comparison of the influence of biomass, solar–thermal and small hydraulic power on the Spanish electricity prices by means of artificial intelligence techniques," Applied Energy, Elsevier, vol. 121(C), pages 28-37.
    8. Wang, Chunyan & Li, Yaqing & Liu, Yi, 2018. "Investigation of water-energy-emission nexus of air pollution control of the coal-fired power industry: A case study of Beijing-Tianjin-Hebei region, China," Energy Policy, Elsevier, vol. 115(C), pages 291-301.
    9. Chen, Shaoqing & Chen, Bin, 2016. "Urban energy–water nexus: A network perspective," Applied Energy, Elsevier, vol. 184(C), pages 905-914.
    10. Wakeel, Muhammad & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2016. "Energy consumption for water use cycles in different countries: A review," Applied Energy, Elsevier, vol. 178(C), pages 868-885.
    11. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    12. Lv, J. & Li, Y.P. & Shan, B.G. & Jin, S.W. & Suo, C., 2018. "Planning energy-water nexus system under multiple uncertainties – A case study of Hebei province," Applied Energy, Elsevier, vol. 229(C), pages 389-403.
    13. Tarroja, Brian & Chiang, Felicia & AghaKouchak, Amir & Samuelsen, Scott, 2018. "Assessing future water resource constraints on thermally based renewable energy resources in California," Applied Energy, Elsevier, vol. 226(C), pages 49-60.
    14. Fernández-Blanco, R. & Kavvadias, K. & Hidalgo González, I., 2017. "Quantifying the water-power linkage on hydrothermal power systems: A Greek case study," Applied Energy, Elsevier, vol. 203(C), pages 240-253.
    15. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    16. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    17. Yuqi Su & Yi Liang & Li Chai & Zixuan Han & Sai Ma & Jiaxuan Lyu & Zhiping Li & Liu Yang, 2019. "Water Degradation by China’s Fossil Fuels Production: A Life Cycle Assessment Based on an Input–Output Model," Sustainability, MDPI, vol. 11(15), pages 1-12, July.
    18. Lourinho, Gonçalo & Brito, Paulo, 2015. "Assessment of biomass energy potential in a region of Portugal (Alto Alentejo)," Energy, Elsevier, vol. 81(C), pages 189-201.
    19. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    20. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:170:y:2016:i:c:p:116-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.